Modeling Crossing Behavior of Drivers at Unsignalized Intersections with Consideration of Risk Perception

Drivers’ risk perception is vital to driving behavior and traffic safety. In the dynamic interaction of a driver-vehicle-environment system, drivers’ risk perception changes dynamically. This study focused on drivers’ risk perception at unsignalized intersections in China and analyzed drivers’ cross...

Full description

Bibliographic Details
Main Authors: Liu Miaomiao, Chen Yongsheng, Lu Guangquan
Format: Article
Language:English
Published: EDP Sciences 2016-01-01
Series:MATEC Web of Conferences
Online Access:http://dx.doi.org/10.1051/matecconf/20168102014
Description
Summary:Drivers’ risk perception is vital to driving behavior and traffic safety. In the dynamic interaction of a driver-vehicle-environment system, drivers’ risk perception changes dynamically. This study focused on drivers’ risk perception at unsignalized intersections in China and analyzed drivers’ crossing behavior. Based on cognitive psychology theory and an adaptive neuro-fuzzy inference system, quantitative models of drivers’ risk perception were established for the crossing processes between two straight-moving vehicles from the orthogonal direction. The acceptable risk perception levels of drivers were identified using a self-developed data analysis method. Based on game theory, the relationship among the quantitative value of drivers’ risk perception, acceptable risk perception level, and vehicle motion state was analyzed. The models of drivers’ crossing behavior were then established. Finally, the behavior models were validated using data collected from real-world vehicle movements and driver decisions. The results showed that the developed behavior models had both high accuracy and good applicability. This study would provide theoretical and algorithmic references for the microscopic simulation and active safety control system of vehicles.
ISSN:2261-236X