Lithocholic acid induces endoplasmic reticulum stress, autophagy and mitochondrial dysfunction in human prostate cancer cells
Lithocholic acid (LCA) is a secondary bile acid that is selectively toxic to human neuroblastoma, breast and prostate cancer cells, whilst sparing normal cells. We previously reported that LCA inhibited cell viability and proliferation and induced apoptosis and necrosis of androgen-dependent LNCaP a...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
PeerJ Inc.
2016-11-01
|
Series: | PeerJ |
Subjects: | |
Online Access: | https://peerj.com/articles/2445.pdf |
id |
doaj-5a495a116cf84ce68eadfc6b042d8028 |
---|---|
record_format |
Article |
spelling |
doaj-5a495a116cf84ce68eadfc6b042d80282020-11-24T22:56:06ZengPeerJ Inc.PeerJ2167-83592016-11-014e244510.7717/peerj.2445Lithocholic acid induces endoplasmic reticulum stress, autophagy and mitochondrial dysfunction in human prostate cancer cellsAhmed A. Gafar0Hossam M. Draz1Alexander A. Goldberg2Mohamed A. Bashandy3Sayed Bakry4Mahmoud A. Khalifa5Walid AbuShair6Vladimir I. Titorenko7J. Thomas Sanderson8Institut Armand-Frappier, Institut National de la Recherche Scientifique (INRS), Laval, QC, CanadaInstitut Armand-Frappier, Institut National de la Recherche Scientifique (INRS), Laval, QC, CanadaInstitut Armand-Frappier, Institut National de la Recherche Scientifique (INRS), Laval, QC, CanadaZoology Department, Faculty of Science, Al-Azhar University, Cairo, EgyptZoology Department, Faculty of Science, Al-Azhar University, Cairo, EgyptZoology Department, Faculty of Science, Al-Azhar University, Cairo, EgyptZoology Department, Faculty of Science, Al-Azhar University, Cairo, EgyptDepartment of Biology, Concordia University, Montréal, QC, CanadaInstitut Armand-Frappier, Institut National de la Recherche Scientifique (INRS), Laval, QC, CanadaLithocholic acid (LCA) is a secondary bile acid that is selectively toxic to human neuroblastoma, breast and prostate cancer cells, whilst sparing normal cells. We previously reported that LCA inhibited cell viability and proliferation and induced apoptosis and necrosis of androgen-dependent LNCaP and androgen-independent PC-3 human prostate cancer cells. In the present study, we investigated the roles of endoplasmic reticulum (ER) stress, autophagy and mitochondrial dysfunction in the toxicity of LCA in PC-3 and autophagy deficient, androgen-independent DU-145 cells. LCA induced ER stress-related proteins, such as CCAAT-enhancer-binding protein homologous protein (CHOP), and the phosphorylation of eukaryotic initiation factor 2-alpha (p-eIF2α) and c-Jun N-terminal kinases (p-JNK) in both cancer cell-types. The p53 upregulated modulator of apoptosis (PUMA) and B cell lymphoma-like protein 11 (BIM) levels were decreased at overtly toxic LCA concentrations, although PUMA levels increased at lower LCA concentrations in both cell lines. LCA induced autophagy-related conversion of microtubule-associated proteins 1A/1B light chain 3B (LC3BI–LC3BII), and autophagy-related protein ATG5 in PC-3 cells, but not in autophagy-deficient DU-145 cells. LCA (>10 µM) increased levels of reactive oxygen species (ROS) concentration-dependently in PC-3 cells, whereas ROS levels were not affected in DU-145 cells. Salubrinal, an inhibitor of eIF2α dephosphorylation and ER stress, reduced LCA-induced CHOP levels slightly in PC-3, but not DU-145 cells. Salubrinal pre-treatment increased the cytotoxicity of LCA in PC-3 and DU-145 cells and resulted in a statistically significant loss of cell viability at normally non-toxic concentrations of LCA. The late-stage autophagy inhibitor bafilomycin A1 exacerbated LCA toxicity at subtoxic LCA concentrations in PC-3 cells. The antioxidant α-tocotrienol strongly inhibited the toxicity of LCA in PC-3 cells, but not in DU-145 cells. Collectively, although LCA induces autophagy and ER stress in PC-3 cells, these processes appear to be initially of protective nature and subsequently consequential to, but not critical for the ROS-mediated mitochondrial dysfunction and cytotoxicity of LCA. The full mechanism of LCA-induced mitochondrial dysfunction and cytotoxicity in the similarly sensitive DU-145 cells remains to be elucidated.https://peerj.com/articles/2445.pdfLithocholic acidProstate cancer cellsPc-3Du-145AutophagyEndoplasmic reticulum stress |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ahmed A. Gafar Hossam M. Draz Alexander A. Goldberg Mohamed A. Bashandy Sayed Bakry Mahmoud A. Khalifa Walid AbuShair Vladimir I. Titorenko J. Thomas Sanderson |
spellingShingle |
Ahmed A. Gafar Hossam M. Draz Alexander A. Goldberg Mohamed A. Bashandy Sayed Bakry Mahmoud A. Khalifa Walid AbuShair Vladimir I. Titorenko J. Thomas Sanderson Lithocholic acid induces endoplasmic reticulum stress, autophagy and mitochondrial dysfunction in human prostate cancer cells PeerJ Lithocholic acid Prostate cancer cells Pc-3 Du-145 Autophagy Endoplasmic reticulum stress |
author_facet |
Ahmed A. Gafar Hossam M. Draz Alexander A. Goldberg Mohamed A. Bashandy Sayed Bakry Mahmoud A. Khalifa Walid AbuShair Vladimir I. Titorenko J. Thomas Sanderson |
author_sort |
Ahmed A. Gafar |
title |
Lithocholic acid induces endoplasmic reticulum stress, autophagy and mitochondrial dysfunction in human prostate cancer cells |
title_short |
Lithocholic acid induces endoplasmic reticulum stress, autophagy and mitochondrial dysfunction in human prostate cancer cells |
title_full |
Lithocholic acid induces endoplasmic reticulum stress, autophagy and mitochondrial dysfunction in human prostate cancer cells |
title_fullStr |
Lithocholic acid induces endoplasmic reticulum stress, autophagy and mitochondrial dysfunction in human prostate cancer cells |
title_full_unstemmed |
Lithocholic acid induces endoplasmic reticulum stress, autophagy and mitochondrial dysfunction in human prostate cancer cells |
title_sort |
lithocholic acid induces endoplasmic reticulum stress, autophagy and mitochondrial dysfunction in human prostate cancer cells |
publisher |
PeerJ Inc. |
series |
PeerJ |
issn |
2167-8359 |
publishDate |
2016-11-01 |
description |
Lithocholic acid (LCA) is a secondary bile acid that is selectively toxic to human neuroblastoma, breast and prostate cancer cells, whilst sparing normal cells. We previously reported that LCA inhibited cell viability and proliferation and induced apoptosis and necrosis of androgen-dependent LNCaP and androgen-independent PC-3 human prostate cancer cells. In the present study, we investigated the roles of endoplasmic reticulum (ER) stress, autophagy and mitochondrial dysfunction in the toxicity of LCA in PC-3 and autophagy deficient, androgen-independent DU-145 cells. LCA induced ER stress-related proteins, such as CCAAT-enhancer-binding protein homologous protein (CHOP), and the phosphorylation of eukaryotic initiation factor 2-alpha (p-eIF2α) and c-Jun N-terminal kinases (p-JNK) in both cancer cell-types. The p53 upregulated modulator of apoptosis (PUMA) and B cell lymphoma-like protein 11 (BIM) levels were decreased at overtly toxic LCA concentrations, although PUMA levels increased at lower LCA concentrations in both cell lines. LCA induced autophagy-related conversion of microtubule-associated proteins 1A/1B light chain 3B (LC3BI–LC3BII), and autophagy-related protein ATG5 in PC-3 cells, but not in autophagy-deficient DU-145 cells. LCA (>10 µM) increased levels of reactive oxygen species (ROS) concentration-dependently in PC-3 cells, whereas ROS levels were not affected in DU-145 cells. Salubrinal, an inhibitor of eIF2α dephosphorylation and ER stress, reduced LCA-induced CHOP levels slightly in PC-3, but not DU-145 cells. Salubrinal pre-treatment increased the cytotoxicity of LCA in PC-3 and DU-145 cells and resulted in a statistically significant loss of cell viability at normally non-toxic concentrations of LCA. The late-stage autophagy inhibitor bafilomycin A1 exacerbated LCA toxicity at subtoxic LCA concentrations in PC-3 cells. The antioxidant α-tocotrienol strongly inhibited the toxicity of LCA in PC-3 cells, but not in DU-145 cells. Collectively, although LCA induces autophagy and ER stress in PC-3 cells, these processes appear to be initially of protective nature and subsequently consequential to, but not critical for the ROS-mediated mitochondrial dysfunction and cytotoxicity of LCA. The full mechanism of LCA-induced mitochondrial dysfunction and cytotoxicity in the similarly sensitive DU-145 cells remains to be elucidated. |
topic |
Lithocholic acid Prostate cancer cells Pc-3 Du-145 Autophagy Endoplasmic reticulum stress |
url |
https://peerj.com/articles/2445.pdf |
work_keys_str_mv |
AT ahmedagafar lithocholicacidinducesendoplasmicreticulumstressautophagyandmitochondrialdysfunctioninhumanprostatecancercells AT hossammdraz lithocholicacidinducesendoplasmicreticulumstressautophagyandmitochondrialdysfunctioninhumanprostatecancercells AT alexanderagoldberg lithocholicacidinducesendoplasmicreticulumstressautophagyandmitochondrialdysfunctioninhumanprostatecancercells AT mohamedabashandy lithocholicacidinducesendoplasmicreticulumstressautophagyandmitochondrialdysfunctioninhumanprostatecancercells AT sayedbakry lithocholicacidinducesendoplasmicreticulumstressautophagyandmitochondrialdysfunctioninhumanprostatecancercells AT mahmoudakhalifa lithocholicacidinducesendoplasmicreticulumstressautophagyandmitochondrialdysfunctioninhumanprostatecancercells AT walidabushair lithocholicacidinducesendoplasmicreticulumstressautophagyandmitochondrialdysfunctioninhumanprostatecancercells AT vladimirititorenko lithocholicacidinducesendoplasmicreticulumstressautophagyandmitochondrialdysfunctioninhumanprostatecancercells AT jthomassanderson lithocholicacidinducesendoplasmicreticulumstressautophagyandmitochondrialdysfunctioninhumanprostatecancercells |
_version_ |
1725654940298248192 |