Summary: | <p>Abstract</p> <p>Background</p> <p>In the developing embryo, total RNA abundance fluctuates caused by functional RNA degradation and zygotic genome activation. These variations in the transcriptome in early development complicate the choice of good reference genes for gene expression studies by quantitative real time polymerase chain reaction.</p> <p>Results</p> <p>In order to identify stably expressed genes for normalisation of quantitative data, within early stages of development, transcription levels were examined of 7 frequently used reference genes (<it>B2M, BACT, GAPDH, H2A, PGK1, SI8</it>, and <it>UBC</it>) at different stages of early porcine embryonic development (germinal vesicle, metaphase-2, 2-cell, 4-cell, early blastocyst, expanded blastocyst). Analysis of transcription profiling by geNorm software revealed that <it>GAPDH, PGK1, S18</it>, and <it>UBC </it>showed high stability in early porcine embryonic development, while transcription levels of <it>B2M, BACT</it>, and <it>H2A </it>were highly regulated.</p> <p>Conclusion</p> <p>Good reference genes that reflect total RNA content were identified in early embryonic development from oocyte to blastocyst. A selection of either <it>GAPDH </it>or <it>PGK1</it>, together with ribosomal protein <it>S18 </it>(<it>S18</it>), and <it>UBC </it>is proposed as reference genes, but the use of <it>B2M, BACT</it>, or <it>H2A </it>is discouraged.</p>
|