Secondary organic aerosol formation during June 2010 in Central Europe: measurements and modelling studies with a mixed thermodynamic-kinetic approach
Until recently secondary organic carbon aerosol (SOA) mass concentrations have been systematically underestimated by three-dimensional atmospheric-chemistry-aerosol models. With a newly proposed concept of aging of organic vapours, more realistic model results for organic carbon aerosol mass concent...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2014-04-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | http://www.atmos-chem-phys.net/14/3831/2014/acp-14-3831-2014.pdf |
id |
doaj-5a1824409b1e4810b4b88f60c21631ac |
---|---|
record_format |
Article |
spelling |
doaj-5a1824409b1e4810b4b88f60c21631ac2020-11-24T23:16:08ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242014-04-011483831384210.5194/acp-14-3831-2014Secondary organic aerosol formation during June 2010 in Central Europe: measurements and modelling studies with a mixed thermodynamic-kinetic approachB. Langmann0K. Sellegri1E. Freney2Institute of Geophysics, University of Hamburg, KlimaCampus, Hamburg, GermanyLaboratoire de Météorologie Physique, CNRS, Université Blaise Pascal Aubière, FranceLaboratoire de Météorologie Physique, CNRS, Université Blaise Pascal Aubière, FranceUntil recently secondary organic carbon aerosol (SOA) mass concentrations have been systematically underestimated by three-dimensional atmospheric-chemistry-aerosol models. With a newly proposed concept of aging of organic vapours, more realistic model results for organic carbon aerosol mass concentrations can be achieved. Applying a mixed thermodynamic-kinetic approach for SOA formation shifted the aerosol size distribution towards particles in the cloud condensation nuclei size range, thereby emphasising the importance of SOA formation schemes for modelling realistic cloud and precipitation formation. The additional importance of hetero-molecular nucleation between H<sub>2</sub>SO<sub>4</sub> and organic vapours remains to be evaluated in three-dimensional atmospheric-chemistry-aerosol models. Here a case study is presented focusing on Puy-de-Dôme, France in June 2010. The measurements indicate a considerable increase in SOA mass concentration during the measurement campaign, which could be reproduced by modelling using a simplified thermodynamic-kinetic approach for SOA formation and increased biogenic volatile organic compound (VOC) precursor emissions. Comparison with a thermodynamic SOA formation approach shows a huge improvement in modelled SOA mass concentration with the thermodynamic-kinetic approach for SOA formation. SOA mass concentration increases by a factor of up to 6 accompanied by a slight improvement of modelled particle size distribution. Even though nucleation events at Puy-de-Dôme were rare during the chosen period of investigation, a weak event in the boundary layer could be reproduced by the model in a sensitivity study when nucleation of low-volatile secondary organic vapour is included. Differences in the model results with and without nucleation of organic vapour are visible in the lower free troposphere over several days. Taking into account the nucleation of organic vapour leads to an increase in accumulation mode particles due to coagulation and condensational growth of nucleation and Aitken mode particles.http://www.atmos-chem-phys.net/14/3831/2014/acp-14-3831-2014.pdf |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
B. Langmann K. Sellegri E. Freney |
spellingShingle |
B. Langmann K. Sellegri E. Freney Secondary organic aerosol formation during June 2010 in Central Europe: measurements and modelling studies with a mixed thermodynamic-kinetic approach Atmospheric Chemistry and Physics |
author_facet |
B. Langmann K. Sellegri E. Freney |
author_sort |
B. Langmann |
title |
Secondary organic aerosol formation during June 2010 in Central Europe: measurements and modelling studies with a mixed thermodynamic-kinetic approach |
title_short |
Secondary organic aerosol formation during June 2010 in Central Europe: measurements and modelling studies with a mixed thermodynamic-kinetic approach |
title_full |
Secondary organic aerosol formation during June 2010 in Central Europe: measurements and modelling studies with a mixed thermodynamic-kinetic approach |
title_fullStr |
Secondary organic aerosol formation during June 2010 in Central Europe: measurements and modelling studies with a mixed thermodynamic-kinetic approach |
title_full_unstemmed |
Secondary organic aerosol formation during June 2010 in Central Europe: measurements and modelling studies with a mixed thermodynamic-kinetic approach |
title_sort |
secondary organic aerosol formation during june 2010 in central europe: measurements and modelling studies with a mixed thermodynamic-kinetic approach |
publisher |
Copernicus Publications |
series |
Atmospheric Chemistry and Physics |
issn |
1680-7316 1680-7324 |
publishDate |
2014-04-01 |
description |
Until recently secondary organic carbon aerosol (SOA) mass concentrations
have been systematically underestimated by three-dimensional
atmospheric-chemistry-aerosol models. With a newly proposed concept of aging
of organic vapours, more realistic model results for organic carbon aerosol
mass concentrations can be achieved. Applying a mixed thermodynamic-kinetic
approach for SOA formation shifted the aerosol size distribution towards
particles in the cloud condensation nuclei size range, thereby emphasising
the importance of SOA formation schemes for modelling realistic cloud and
precipitation formation. The additional importance of hetero-molecular
nucleation between H<sub>2</sub>SO<sub>4</sub> and organic vapours remains to be
evaluated in three-dimensional atmospheric-chemistry-aerosol models. Here a
case study is presented focusing on Puy-de-Dôme, France in June 2010.
The measurements indicate a considerable increase in SOA mass concentration
during the measurement campaign, which could be reproduced by modelling
using a simplified thermodynamic-kinetic approach for SOA formation and
increased biogenic volatile organic compound (VOC) precursor emissions. Comparison with a thermodynamic
SOA formation approach shows a huge improvement in modelled SOA mass
concentration with the thermodynamic-kinetic approach for SOA formation. SOA
mass concentration increases by a factor of up to 6 accompanied by a slight
improvement of modelled particle size distribution. Even though nucleation
events at Puy-de-Dôme were rare during the chosen period of
investigation, a weak event in the boundary layer could be reproduced by the
model in a sensitivity study when nucleation of low-volatile secondary
organic vapour is included. Differences in the model results with and
without nucleation of organic vapour are visible in the lower free
troposphere over several days. Taking into account the nucleation of organic
vapour leads to an increase in accumulation mode particles due to
coagulation and condensational growth of nucleation and Aitken mode
particles. |
url |
http://www.atmos-chem-phys.net/14/3831/2014/acp-14-3831-2014.pdf |
work_keys_str_mv |
AT blangmann secondaryorganicaerosolformationduringjune2010incentraleuropemeasurementsandmodellingstudieswithamixedthermodynamickineticapproach AT ksellegri secondaryorganicaerosolformationduringjune2010incentraleuropemeasurementsandmodellingstudieswithamixedthermodynamickineticapproach AT efreney secondaryorganicaerosolformationduringjune2010incentraleuropemeasurementsandmodellingstudieswithamixedthermodynamickineticapproach |
_version_ |
1725588556820250624 |