The geothermal potential of underground buildings in hot climates: Case of Southern Algeria

Underground buildings are one of the most effective old and modern techniques, at the same time to meet the trade-off between thermal comfort and low energy consumption in hot and arid climates, through the soil thermal properties, which can be applied as a heat capacitor for moderating indoor tempe...

Full description

Bibliographic Details
Main Authors: Belkhir Hebbal, Yacine Marif, Maamar Hamdani, Mohamed Mustapha Belhadj, Hamza Bouguettaia, Djamel Bechki
Format: Article
Language:English
Published: Elsevier 2021-12-01
Series:Case Studies in Thermal Engineering
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2214157X21005852
Description
Summary:Underground buildings are one of the most effective old and modern techniques, at the same time to meet the trade-off between thermal comfort and low energy consumption in hot and arid climates, through the soil thermal properties, which can be applied as a heat capacitor for moderating indoor temperatures. This research aims to improve the thermal comfort and energy efficiency of underground buildings compared to aboveground buildings in hot and arid climates based on yearly energy consumption. The experimental measurements of soil temperatures at different depths were compared to the numerical results of the Kasuda equation. Furthermore, TRNSYS software simulation findings were validated by monitoring the temperature of an underground room in Ouargla, Algeria, using digital temperature sensors. The findings revealed that an underground structure with a depth of 2.34 m decreases cooling energy demand considerably during the summer season. Furthermore, with and without state support, the investment return time was predicted from 6.5 to 3.25 years, respectively.
ISSN:2214-157X