A mixed semilinear parabolic problem from combustion theory
We prove existence, uniqueness, and regularity of the solution to a mixed initial boundary-value problem. The equation is semilinear uniformly parabolic with principal part in divergence form, in a non-cylindrical space-time domain. Here we extend our results in cite{LVWmix} to a more general domain...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2001-01-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/conf-proc/06/l1/abstr.html |
Summary: | We prove existence, uniqueness, and regularity of the solution to a mixed initial boundary-value problem. The equation is semilinear uniformly parabolic with principal part in divergence form, in a non-cylindrical space-time domain. Here we extend our results in cite{LVWmix} to a more general domain. As in cite{LVWmix}, we assume only mild regularity on the coefficients, on the non-cylindrical part of the lateral boundary (where the Dirichlet data are given), and on the Dirichlet data. |
---|---|
ISSN: | 1072-6691 |