Harmonization of resting-state functional MRI data across multiple imaging sites via the separation of site differences into sampling bias and measurement bias.
When collecting large amounts of neuroimaging data associated with psychiatric disorders, images must be acquired from multiple sites because of the limited capacity of a single site. However, site differences represent a barrier when acquiring multisite neuroimaging data. We utilized a traveling-su...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2019-04-01
|
Series: | PLoS Biology |
Online Access: | https://doi.org/10.1371/journal.pbio.3000042 |
id |
doaj-59e197aa4d004c4abd056cbfbc9c3b90 |
---|---|
record_format |
Article |
spelling |
doaj-59e197aa4d004c4abd056cbfbc9c3b902021-07-02T17:07:44ZengPublic Library of Science (PLoS)PLoS Biology1544-91731545-78852019-04-01174e300004210.1371/journal.pbio.3000042Harmonization of resting-state functional MRI data across multiple imaging sites via the separation of site differences into sampling bias and measurement bias.Ayumu YamashitaNoriaki YahataTakashi ItahashiGiuseppe LisiTakashi YamadaNaho IchikawaMasahiro TakamuraYujiro YoshiharaAkira KunimatsuNaohiro OkadaHirotaka YamagataKoji MatsuoRyuichiro HashimotoGo OkadaYuki SakaiJun MorimotoJin NarumotoYasuhiro ShimadaKiyoto KasaiNobumasa KatoHidehiko TakahashiYasumasa OkamotoSaori C TanakaMitsuo KawatoOkito YamashitaHiroshi ImamizuWhen collecting large amounts of neuroimaging data associated with psychiatric disorders, images must be acquired from multiple sites because of the limited capacity of a single site. However, site differences represent a barrier when acquiring multisite neuroimaging data. We utilized a traveling-subject dataset in conjunction with a multisite, multidisorder dataset to demonstrate that site differences are composed of biological sampling bias and engineering measurement bias. The effects on resting-state functional MRI connectivity based on pairwise correlations because of both bias types were greater than or equal to psychiatric disorder differences. Furthermore, our findings indicated that each site can sample only from a subpopulation of participants. This result suggests that it is essential to collect large amounts of neuroimaging data from as many sites as possible to appropriately estimate the distribution of the grand population. Finally, we developed a novel harmonization method that removed only the measurement bias by using a traveling-subject dataset and achieved the reduction of the measurement bias by 29% and improvement of the signal-to-noise ratios by 40%. Our results provide fundamental knowledge regarding site effects, which is important for future research using multisite, multidisorder resting-state functional MRI data.https://doi.org/10.1371/journal.pbio.3000042 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ayumu Yamashita Noriaki Yahata Takashi Itahashi Giuseppe Lisi Takashi Yamada Naho Ichikawa Masahiro Takamura Yujiro Yoshihara Akira Kunimatsu Naohiro Okada Hirotaka Yamagata Koji Matsuo Ryuichiro Hashimoto Go Okada Yuki Sakai Jun Morimoto Jin Narumoto Yasuhiro Shimada Kiyoto Kasai Nobumasa Kato Hidehiko Takahashi Yasumasa Okamoto Saori C Tanaka Mitsuo Kawato Okito Yamashita Hiroshi Imamizu |
spellingShingle |
Ayumu Yamashita Noriaki Yahata Takashi Itahashi Giuseppe Lisi Takashi Yamada Naho Ichikawa Masahiro Takamura Yujiro Yoshihara Akira Kunimatsu Naohiro Okada Hirotaka Yamagata Koji Matsuo Ryuichiro Hashimoto Go Okada Yuki Sakai Jun Morimoto Jin Narumoto Yasuhiro Shimada Kiyoto Kasai Nobumasa Kato Hidehiko Takahashi Yasumasa Okamoto Saori C Tanaka Mitsuo Kawato Okito Yamashita Hiroshi Imamizu Harmonization of resting-state functional MRI data across multiple imaging sites via the separation of site differences into sampling bias and measurement bias. PLoS Biology |
author_facet |
Ayumu Yamashita Noriaki Yahata Takashi Itahashi Giuseppe Lisi Takashi Yamada Naho Ichikawa Masahiro Takamura Yujiro Yoshihara Akira Kunimatsu Naohiro Okada Hirotaka Yamagata Koji Matsuo Ryuichiro Hashimoto Go Okada Yuki Sakai Jun Morimoto Jin Narumoto Yasuhiro Shimada Kiyoto Kasai Nobumasa Kato Hidehiko Takahashi Yasumasa Okamoto Saori C Tanaka Mitsuo Kawato Okito Yamashita Hiroshi Imamizu |
author_sort |
Ayumu Yamashita |
title |
Harmonization of resting-state functional MRI data across multiple imaging sites via the separation of site differences into sampling bias and measurement bias. |
title_short |
Harmonization of resting-state functional MRI data across multiple imaging sites via the separation of site differences into sampling bias and measurement bias. |
title_full |
Harmonization of resting-state functional MRI data across multiple imaging sites via the separation of site differences into sampling bias and measurement bias. |
title_fullStr |
Harmonization of resting-state functional MRI data across multiple imaging sites via the separation of site differences into sampling bias and measurement bias. |
title_full_unstemmed |
Harmonization of resting-state functional MRI data across multiple imaging sites via the separation of site differences into sampling bias and measurement bias. |
title_sort |
harmonization of resting-state functional mri data across multiple imaging sites via the separation of site differences into sampling bias and measurement bias. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS Biology |
issn |
1544-9173 1545-7885 |
publishDate |
2019-04-01 |
description |
When collecting large amounts of neuroimaging data associated with psychiatric disorders, images must be acquired from multiple sites because of the limited capacity of a single site. However, site differences represent a barrier when acquiring multisite neuroimaging data. We utilized a traveling-subject dataset in conjunction with a multisite, multidisorder dataset to demonstrate that site differences are composed of biological sampling bias and engineering measurement bias. The effects on resting-state functional MRI connectivity based on pairwise correlations because of both bias types were greater than or equal to psychiatric disorder differences. Furthermore, our findings indicated that each site can sample only from a subpopulation of participants. This result suggests that it is essential to collect large amounts of neuroimaging data from as many sites as possible to appropriately estimate the distribution of the grand population. Finally, we developed a novel harmonization method that removed only the measurement bias by using a traveling-subject dataset and achieved the reduction of the measurement bias by 29% and improvement of the signal-to-noise ratios by 40%. Our results provide fundamental knowledge regarding site effects, which is important for future research using multisite, multidisorder resting-state functional MRI data. |
url |
https://doi.org/10.1371/journal.pbio.3000042 |
work_keys_str_mv |
AT ayumuyamashita harmonizationofrestingstatefunctionalmridataacrossmultipleimagingsitesviatheseparationofsitedifferencesintosamplingbiasandmeasurementbias AT noriakiyahata harmonizationofrestingstatefunctionalmridataacrossmultipleimagingsitesviatheseparationofsitedifferencesintosamplingbiasandmeasurementbias AT takashiitahashi harmonizationofrestingstatefunctionalmridataacrossmultipleimagingsitesviatheseparationofsitedifferencesintosamplingbiasandmeasurementbias AT giuseppelisi harmonizationofrestingstatefunctionalmridataacrossmultipleimagingsitesviatheseparationofsitedifferencesintosamplingbiasandmeasurementbias AT takashiyamada harmonizationofrestingstatefunctionalmridataacrossmultipleimagingsitesviatheseparationofsitedifferencesintosamplingbiasandmeasurementbias AT nahoichikawa harmonizationofrestingstatefunctionalmridataacrossmultipleimagingsitesviatheseparationofsitedifferencesintosamplingbiasandmeasurementbias AT masahirotakamura harmonizationofrestingstatefunctionalmridataacrossmultipleimagingsitesviatheseparationofsitedifferencesintosamplingbiasandmeasurementbias AT yujiroyoshihara harmonizationofrestingstatefunctionalmridataacrossmultipleimagingsitesviatheseparationofsitedifferencesintosamplingbiasandmeasurementbias AT akirakunimatsu harmonizationofrestingstatefunctionalmridataacrossmultipleimagingsitesviatheseparationofsitedifferencesintosamplingbiasandmeasurementbias AT naohirookada harmonizationofrestingstatefunctionalmridataacrossmultipleimagingsitesviatheseparationofsitedifferencesintosamplingbiasandmeasurementbias AT hirotakayamagata harmonizationofrestingstatefunctionalmridataacrossmultipleimagingsitesviatheseparationofsitedifferencesintosamplingbiasandmeasurementbias AT kojimatsuo harmonizationofrestingstatefunctionalmridataacrossmultipleimagingsitesviatheseparationofsitedifferencesintosamplingbiasandmeasurementbias AT ryuichirohashimoto harmonizationofrestingstatefunctionalmridataacrossmultipleimagingsitesviatheseparationofsitedifferencesintosamplingbiasandmeasurementbias AT gookada harmonizationofrestingstatefunctionalmridataacrossmultipleimagingsitesviatheseparationofsitedifferencesintosamplingbiasandmeasurementbias AT yukisakai harmonizationofrestingstatefunctionalmridataacrossmultipleimagingsitesviatheseparationofsitedifferencesintosamplingbiasandmeasurementbias AT junmorimoto harmonizationofrestingstatefunctionalmridataacrossmultipleimagingsitesviatheseparationofsitedifferencesintosamplingbiasandmeasurementbias AT jinnarumoto harmonizationofrestingstatefunctionalmridataacrossmultipleimagingsitesviatheseparationofsitedifferencesintosamplingbiasandmeasurementbias AT yasuhiroshimada harmonizationofrestingstatefunctionalmridataacrossmultipleimagingsitesviatheseparationofsitedifferencesintosamplingbiasandmeasurementbias AT kiyotokasai harmonizationofrestingstatefunctionalmridataacrossmultipleimagingsitesviatheseparationofsitedifferencesintosamplingbiasandmeasurementbias AT nobumasakato harmonizationofrestingstatefunctionalmridataacrossmultipleimagingsitesviatheseparationofsitedifferencesintosamplingbiasandmeasurementbias AT hidehikotakahashi harmonizationofrestingstatefunctionalmridataacrossmultipleimagingsitesviatheseparationofsitedifferencesintosamplingbiasandmeasurementbias AT yasumasaokamoto harmonizationofrestingstatefunctionalmridataacrossmultipleimagingsitesviatheseparationofsitedifferencesintosamplingbiasandmeasurementbias AT saorictanaka harmonizationofrestingstatefunctionalmridataacrossmultipleimagingsitesviatheseparationofsitedifferencesintosamplingbiasandmeasurementbias AT mitsuokawato harmonizationofrestingstatefunctionalmridataacrossmultipleimagingsitesviatheseparationofsitedifferencesintosamplingbiasandmeasurementbias AT okitoyamashita harmonizationofrestingstatefunctionalmridataacrossmultipleimagingsitesviatheseparationofsitedifferencesintosamplingbiasandmeasurementbias AT hiroshiimamizu harmonizationofrestingstatefunctionalmridataacrossmultipleimagingsitesviatheseparationofsitedifferencesintosamplingbiasandmeasurementbias |
_version_ |
1721325998599831552 |