Rotational periodic solutions for fractional iterative systems
In this paper, we devoted to deal with the rotational periodic problem of some fractional iterative systems in the sense of Caputo fractional derivative. Under one sided-Lipschtiz condition on nonlinear term, the existence and uniqueness of solution for a fractional iterative equation is proved by a...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2021-08-01
|
Series: | AIMS Mathematics |
Subjects: | |
Online Access: | https://www.aimspress.com/article/doi/10.3934/math.2021651?viewType=HTML |
Summary: | In this paper, we devoted to deal with the rotational periodic problem of some fractional iterative systems in the sense of Caputo fractional derivative. Under one sided-Lipschtiz condition on nonlinear term, the existence and uniqueness of solution for a fractional iterative equation is proved by applying the Leray-Schauder fixed point theorem and topological degree theory. Furthermore, the well posedness for a nonlinear control system with iteration term and a multivalued disturbance is established by using set-valued theory. The existence of solutions for a iterative neural network system is demonstrated at the end. |
---|---|
ISSN: | 2473-6988 |