Hadamard And Fejer-Hadamard Type Inequalities for Convex and Relative Convex Functions via an Extended Generalized Mittag-Leffler Function

In this paper, we will prove the Hadamard and the Fejer-Hadamard type integral inequalities for convex and relative convex functions due to an extended generalized Mittag-Leffler function. These results contain several fractional integral inequalities for the well known fractional integral operators...

Full description

Bibliographic Details
Main Authors: Ghulam Farid, Vishnu Narayan Mishra, Sajid Mehmood
Format: Article
Language:English
Published: Etamaths Publishing 2019-09-01
Series:International Journal of Analysis and Applications
Online Access:http://www.etamaths.com/index.php/ijaa/article/view/1869
id doaj-59d3a41a40424b278a5c684b71c53029
record_format Article
spelling doaj-59d3a41a40424b278a5c684b71c530292020-11-25T00:44:07ZengEtamaths PublishingInternational Journal of Analysis and Applications2291-86392019-09-01175892903412Hadamard And Fejer-Hadamard Type Inequalities for Convex and Relative Convex Functions via an Extended Generalized Mittag-Leffler FunctionGhulam FaridVishnu Narayan MishraSajid MehmoodIn this paper, we will prove the Hadamard and the Fejer-Hadamard type integral inequalities for convex and relative convex functions due to an extended generalized Mittag-Leffler function. These results contain several fractional integral inequalities for the well known fractional integral operators.http://www.etamaths.com/index.php/ijaa/article/view/1869
collection DOAJ
language English
format Article
sources DOAJ
author Ghulam Farid
Vishnu Narayan Mishra
Sajid Mehmood
spellingShingle Ghulam Farid
Vishnu Narayan Mishra
Sajid Mehmood
Hadamard And Fejer-Hadamard Type Inequalities for Convex and Relative Convex Functions via an Extended Generalized Mittag-Leffler Function
International Journal of Analysis and Applications
author_facet Ghulam Farid
Vishnu Narayan Mishra
Sajid Mehmood
author_sort Ghulam Farid
title Hadamard And Fejer-Hadamard Type Inequalities for Convex and Relative Convex Functions via an Extended Generalized Mittag-Leffler Function
title_short Hadamard And Fejer-Hadamard Type Inequalities for Convex and Relative Convex Functions via an Extended Generalized Mittag-Leffler Function
title_full Hadamard And Fejer-Hadamard Type Inequalities for Convex and Relative Convex Functions via an Extended Generalized Mittag-Leffler Function
title_fullStr Hadamard And Fejer-Hadamard Type Inequalities for Convex and Relative Convex Functions via an Extended Generalized Mittag-Leffler Function
title_full_unstemmed Hadamard And Fejer-Hadamard Type Inequalities for Convex and Relative Convex Functions via an Extended Generalized Mittag-Leffler Function
title_sort hadamard and fejer-hadamard type inequalities for convex and relative convex functions via an extended generalized mittag-leffler function
publisher Etamaths Publishing
series International Journal of Analysis and Applications
issn 2291-8639
publishDate 2019-09-01
description In this paper, we will prove the Hadamard and the Fejer-Hadamard type integral inequalities for convex and relative convex functions due to an extended generalized Mittag-Leffler function. These results contain several fractional integral inequalities for the well known fractional integral operators.
url http://www.etamaths.com/index.php/ijaa/article/view/1869
work_keys_str_mv AT ghulamfarid hadamardandfejerhadamardtypeinequalitiesforconvexandrelativeconvexfunctionsviaanextendedgeneralizedmittaglefflerfunction
AT vishnunarayanmishra hadamardandfejerhadamardtypeinequalitiesforconvexandrelativeconvexfunctionsviaanextendedgeneralizedmittaglefflerfunction
AT sajidmehmood hadamardandfejerhadamardtypeinequalitiesforconvexandrelativeconvexfunctionsviaanextendedgeneralizedmittaglefflerfunction
_version_ 1725276306737725440