Hermitean Téodorescu Transform Decomposition of Continuous Matrix Functions on Fractal Hypersurfaces

<p/> <p>We consider H&#246;lder continuous circulant (<inline-formula> <graphic file="1687-2770-2010-791358-i1.gif"/></inline-formula>) matrix functions <inline-formula> <graphic file="1687-2770-2010-791358-i2.gif"/></inline-formul...

Full description

Bibliographic Details
Main Authors: Bory-Reyes Juan, Brackx Fred, De Schepper Hennie, Abreu-Blaya Ricardo
Format: Article
Language:English
Published: SpringerOpen 2010-01-01
Series:Boundary Value Problems
Online Access:http://www.boundaryvalueproblems.com/content/2010/791358
id doaj-59ce78c2a1974351b4ad1c2ef7d99011
record_format Article
spelling doaj-59ce78c2a1974351b4ad1c2ef7d990112020-11-25T00:06:34ZengSpringerOpenBoundary Value Problems1687-27621687-27702010-01-0120101791358Hermitean T&#233;odorescu Transform Decomposition of Continuous Matrix Functions on Fractal HypersurfacesBory-Reyes JuanBrackx FredDe Schepper HennieAbreu-Blaya Ricardo<p/> <p>We consider H&#246;lder continuous circulant (<inline-formula> <graphic file="1687-2770-2010-791358-i1.gif"/></inline-formula>) matrix functions <inline-formula> <graphic file="1687-2770-2010-791358-i2.gif"/></inline-formula> defined on the fractal boundary <inline-formula> <graphic file="1687-2770-2010-791358-i3.gif"/></inline-formula> of a domain <inline-formula> <graphic file="1687-2770-2010-791358-i4.gif"/></inline-formula> in <inline-formula> <graphic file="1687-2770-2010-791358-i5.gif"/></inline-formula>. The main goal is to study under which conditions such a function <inline-formula> <graphic file="1687-2770-2010-791358-i6.gif"/></inline-formula> can be decomposed as <inline-formula> <graphic file="1687-2770-2010-791358-i7.gif"/></inline-formula>, where the components <inline-formula> <graphic file="1687-2770-2010-791358-i8.gif"/></inline-formula> are extendable to <inline-formula> <graphic file="1687-2770-2010-791358-i9.gif"/></inline-formula>-monogenic functions in the interior and the exterior of <inline-formula> <graphic file="1687-2770-2010-791358-i10.gif"/></inline-formula>, respectively. <inline-formula> <graphic file="1687-2770-2010-791358-i11.gif"/></inline-formula>-monogenicity are a concept from the framework of Hermitean Clifford analysis, a higher-dimensional function theory centered around the simultaneous null solutions of two first-order vector-valued differential operators, called Hermitean Dirac operators. <inline-formula> <graphic file="1687-2770-2010-791358-i12.gif"/></inline-formula>-monogenic functions then are the null solutions of a (<inline-formula> <graphic file="1687-2770-2010-791358-i13.gif"/></inline-formula>) matrix Dirac operator, having these Hermitean Dirac operators as its entries; such matrix functions play an important role in the function theoretic development of Hermitean Clifford analysis. In the present paper a matricial Hermitean T&#233;odorescu transform is the key to solve the problem under consideration. The obtained results are then shown to include the ones where domains with an Ahlfors-David regular boundary were considered.</p>http://www.boundaryvalueproblems.com/content/2010/791358
collection DOAJ
language English
format Article
sources DOAJ
author Bory-Reyes Juan
Brackx Fred
De Schepper Hennie
Abreu-Blaya Ricardo
spellingShingle Bory-Reyes Juan
Brackx Fred
De Schepper Hennie
Abreu-Blaya Ricardo
Hermitean T&#233;odorescu Transform Decomposition of Continuous Matrix Functions on Fractal Hypersurfaces
Boundary Value Problems
author_facet Bory-Reyes Juan
Brackx Fred
De Schepper Hennie
Abreu-Blaya Ricardo
author_sort Bory-Reyes Juan
title Hermitean T&#233;odorescu Transform Decomposition of Continuous Matrix Functions on Fractal Hypersurfaces
title_short Hermitean T&#233;odorescu Transform Decomposition of Continuous Matrix Functions on Fractal Hypersurfaces
title_full Hermitean T&#233;odorescu Transform Decomposition of Continuous Matrix Functions on Fractal Hypersurfaces
title_fullStr Hermitean T&#233;odorescu Transform Decomposition of Continuous Matrix Functions on Fractal Hypersurfaces
title_full_unstemmed Hermitean T&#233;odorescu Transform Decomposition of Continuous Matrix Functions on Fractal Hypersurfaces
title_sort hermitean t&#233;odorescu transform decomposition of continuous matrix functions on fractal hypersurfaces
publisher SpringerOpen
series Boundary Value Problems
issn 1687-2762
1687-2770
publishDate 2010-01-01
description <p/> <p>We consider H&#246;lder continuous circulant (<inline-formula> <graphic file="1687-2770-2010-791358-i1.gif"/></inline-formula>) matrix functions <inline-formula> <graphic file="1687-2770-2010-791358-i2.gif"/></inline-formula> defined on the fractal boundary <inline-formula> <graphic file="1687-2770-2010-791358-i3.gif"/></inline-formula> of a domain <inline-formula> <graphic file="1687-2770-2010-791358-i4.gif"/></inline-formula> in <inline-formula> <graphic file="1687-2770-2010-791358-i5.gif"/></inline-formula>. The main goal is to study under which conditions such a function <inline-formula> <graphic file="1687-2770-2010-791358-i6.gif"/></inline-formula> can be decomposed as <inline-formula> <graphic file="1687-2770-2010-791358-i7.gif"/></inline-formula>, where the components <inline-formula> <graphic file="1687-2770-2010-791358-i8.gif"/></inline-formula> are extendable to <inline-formula> <graphic file="1687-2770-2010-791358-i9.gif"/></inline-formula>-monogenic functions in the interior and the exterior of <inline-formula> <graphic file="1687-2770-2010-791358-i10.gif"/></inline-formula>, respectively. <inline-formula> <graphic file="1687-2770-2010-791358-i11.gif"/></inline-formula>-monogenicity are a concept from the framework of Hermitean Clifford analysis, a higher-dimensional function theory centered around the simultaneous null solutions of two first-order vector-valued differential operators, called Hermitean Dirac operators. <inline-formula> <graphic file="1687-2770-2010-791358-i12.gif"/></inline-formula>-monogenic functions then are the null solutions of a (<inline-formula> <graphic file="1687-2770-2010-791358-i13.gif"/></inline-formula>) matrix Dirac operator, having these Hermitean Dirac operators as its entries; such matrix functions play an important role in the function theoretic development of Hermitean Clifford analysis. In the present paper a matricial Hermitean T&#233;odorescu transform is the key to solve the problem under consideration. The obtained results are then shown to include the ones where domains with an Ahlfors-David regular boundary were considered.</p>
url http://www.boundaryvalueproblems.com/content/2010/791358
work_keys_str_mv AT boryreyesjuan hermiteant233odorescutransformdecompositionofcontinuousmatrixfunctionsonfractalhypersurfaces
AT brackxfred hermiteant233odorescutransformdecompositionofcontinuousmatrixfunctionsonfractalhypersurfaces
AT deschepperhennie hermiteant233odorescutransformdecompositionofcontinuousmatrixfunctionsonfractalhypersurfaces
AT abreublayaricardo hermiteant233odorescutransformdecompositionofcontinuousmatrixfunctionsonfractalhypersurfaces
_version_ 1725421466598506496