Hermitean Téodorescu Transform Decomposition of Continuous Matrix Functions on Fractal Hypersurfaces
<p/> <p>We consider Hölder continuous circulant (<inline-formula> <graphic file="1687-2770-2010-791358-i1.gif"/></inline-formula>) matrix functions <inline-formula> <graphic file="1687-2770-2010-791358-i2.gif"/></inline-formul...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2010-01-01
|
Series: | Boundary Value Problems |
Online Access: | http://www.boundaryvalueproblems.com/content/2010/791358 |
id |
doaj-59ce78c2a1974351b4ad1c2ef7d99011 |
---|---|
record_format |
Article |
spelling |
doaj-59ce78c2a1974351b4ad1c2ef7d990112020-11-25T00:06:34ZengSpringerOpenBoundary Value Problems1687-27621687-27702010-01-0120101791358Hermitean Téodorescu Transform Decomposition of Continuous Matrix Functions on Fractal HypersurfacesBory-Reyes JuanBrackx FredDe Schepper HennieAbreu-Blaya Ricardo<p/> <p>We consider Hölder continuous circulant (<inline-formula> <graphic file="1687-2770-2010-791358-i1.gif"/></inline-formula>) matrix functions <inline-formula> <graphic file="1687-2770-2010-791358-i2.gif"/></inline-formula> defined on the fractal boundary <inline-formula> <graphic file="1687-2770-2010-791358-i3.gif"/></inline-formula> of a domain <inline-formula> <graphic file="1687-2770-2010-791358-i4.gif"/></inline-formula> in <inline-formula> <graphic file="1687-2770-2010-791358-i5.gif"/></inline-formula>. The main goal is to study under which conditions such a function <inline-formula> <graphic file="1687-2770-2010-791358-i6.gif"/></inline-formula> can be decomposed as <inline-formula> <graphic file="1687-2770-2010-791358-i7.gif"/></inline-formula>, where the components <inline-formula> <graphic file="1687-2770-2010-791358-i8.gif"/></inline-formula> are extendable to <inline-formula> <graphic file="1687-2770-2010-791358-i9.gif"/></inline-formula>-monogenic functions in the interior and the exterior of <inline-formula> <graphic file="1687-2770-2010-791358-i10.gif"/></inline-formula>, respectively. <inline-formula> <graphic file="1687-2770-2010-791358-i11.gif"/></inline-formula>-monogenicity are a concept from the framework of Hermitean Clifford analysis, a higher-dimensional function theory centered around the simultaneous null solutions of two first-order vector-valued differential operators, called Hermitean Dirac operators. <inline-formula> <graphic file="1687-2770-2010-791358-i12.gif"/></inline-formula>-monogenic functions then are the null solutions of a (<inline-formula> <graphic file="1687-2770-2010-791358-i13.gif"/></inline-formula>) matrix Dirac operator, having these Hermitean Dirac operators as its entries; such matrix functions play an important role in the function theoretic development of Hermitean Clifford analysis. In the present paper a matricial Hermitean Téodorescu transform is the key to solve the problem under consideration. The obtained results are then shown to include the ones where domains with an Ahlfors-David regular boundary were considered.</p>http://www.boundaryvalueproblems.com/content/2010/791358 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Bory-Reyes Juan Brackx Fred De Schepper Hennie Abreu-Blaya Ricardo |
spellingShingle |
Bory-Reyes Juan Brackx Fred De Schepper Hennie Abreu-Blaya Ricardo Hermitean Téodorescu Transform Decomposition of Continuous Matrix Functions on Fractal Hypersurfaces Boundary Value Problems |
author_facet |
Bory-Reyes Juan Brackx Fred De Schepper Hennie Abreu-Blaya Ricardo |
author_sort |
Bory-Reyes Juan |
title |
Hermitean Téodorescu Transform Decomposition of Continuous Matrix Functions on Fractal Hypersurfaces |
title_short |
Hermitean Téodorescu Transform Decomposition of Continuous Matrix Functions on Fractal Hypersurfaces |
title_full |
Hermitean Téodorescu Transform Decomposition of Continuous Matrix Functions on Fractal Hypersurfaces |
title_fullStr |
Hermitean Téodorescu Transform Decomposition of Continuous Matrix Functions on Fractal Hypersurfaces |
title_full_unstemmed |
Hermitean Téodorescu Transform Decomposition of Continuous Matrix Functions on Fractal Hypersurfaces |
title_sort |
hermitean téodorescu transform decomposition of continuous matrix functions on fractal hypersurfaces |
publisher |
SpringerOpen |
series |
Boundary Value Problems |
issn |
1687-2762 1687-2770 |
publishDate |
2010-01-01 |
description |
<p/> <p>We consider Hölder continuous circulant (<inline-formula> <graphic file="1687-2770-2010-791358-i1.gif"/></inline-formula>) matrix functions <inline-formula> <graphic file="1687-2770-2010-791358-i2.gif"/></inline-formula> defined on the fractal boundary <inline-formula> <graphic file="1687-2770-2010-791358-i3.gif"/></inline-formula> of a domain <inline-formula> <graphic file="1687-2770-2010-791358-i4.gif"/></inline-formula> in <inline-formula> <graphic file="1687-2770-2010-791358-i5.gif"/></inline-formula>. The main goal is to study under which conditions such a function <inline-formula> <graphic file="1687-2770-2010-791358-i6.gif"/></inline-formula> can be decomposed as <inline-formula> <graphic file="1687-2770-2010-791358-i7.gif"/></inline-formula>, where the components <inline-formula> <graphic file="1687-2770-2010-791358-i8.gif"/></inline-formula> are extendable to <inline-formula> <graphic file="1687-2770-2010-791358-i9.gif"/></inline-formula>-monogenic functions in the interior and the exterior of <inline-formula> <graphic file="1687-2770-2010-791358-i10.gif"/></inline-formula>, respectively. <inline-formula> <graphic file="1687-2770-2010-791358-i11.gif"/></inline-formula>-monogenicity are a concept from the framework of Hermitean Clifford analysis, a higher-dimensional function theory centered around the simultaneous null solutions of two first-order vector-valued differential operators, called Hermitean Dirac operators. <inline-formula> <graphic file="1687-2770-2010-791358-i12.gif"/></inline-formula>-monogenic functions then are the null solutions of a (<inline-formula> <graphic file="1687-2770-2010-791358-i13.gif"/></inline-formula>) matrix Dirac operator, having these Hermitean Dirac operators as its entries; such matrix functions play an important role in the function theoretic development of Hermitean Clifford analysis. In the present paper a matricial Hermitean Téodorescu transform is the key to solve the problem under consideration. The obtained results are then shown to include the ones where domains with an Ahlfors-David regular boundary were considered.</p> |
url |
http://www.boundaryvalueproblems.com/content/2010/791358 |
work_keys_str_mv |
AT boryreyesjuan hermiteant233odorescutransformdecompositionofcontinuousmatrixfunctionsonfractalhypersurfaces AT brackxfred hermiteant233odorescutransformdecompositionofcontinuousmatrixfunctionsonfractalhypersurfaces AT deschepperhennie hermiteant233odorescutransformdecompositionofcontinuousmatrixfunctionsonfractalhypersurfaces AT abreublayaricardo hermiteant233odorescutransformdecompositionofcontinuousmatrixfunctionsonfractalhypersurfaces |
_version_ |
1725421466598506496 |