Power Efficient Fully Differential Bulk Driven OTA for Portable Biomedical Application

This paper presents a power efficient, bulk driven, source degenerated fully differential operational transconductance amplifier (OTA), operating in the subthreshold region. The input part of the OTA consists of a bulk driven source degenerated differential pair and cross coupled transistors to impr...

Full description

Bibliographic Details
Main Authors: Saleha Bano, Ghous Bakhsh Narejo, Syed Muhammad Usman Ali Shah
Format: Article
Language:English
Published: MDPI AG 2018-03-01
Series:Electronics
Subjects:
Online Access:http://www.mdpi.com/2079-9292/7/3/41
Description
Summary:This paper presents a power efficient, bulk driven, source degenerated fully differential operational transconductance amplifier (OTA), operating in the subthreshold region. The input part of the OTA consists of a bulk driven source degenerated differential pair and cross coupled transistors to improve the linearity of OTA. It consists of a bulk driven pair to reduce the supply voltage and to improve the linearity. The proposed fully differential OTA has utilized self-cascode current mirror loads which increases the output impedance and hence the overall intrinsic gain. A subthreshold region is adopted to reduce the power consumption of the circuit. For a 200 mVpp sinusoidal input at 100 Hz, a total harmonic distortion (THD) of −58.56 dB is achieved. The gain, gain bandwidth (GBW), phase margin (PM) and gain margin (GM) values obtained were 48.4 dB, 3.1 KHz, 80° and 19.01 dB, respectively. The common mode rejection ratio (CMRR), power supply rejection ratio (PSRR) and slew rate +/− values were 146.3 dB, 83 dB and 99.56/100 V/ms, respectively. The circuit is capable of operating under a supply voltage of 0.8 V with a power consumption of 59.04 nW, which proves that the circuit is suitable for portable biomedical devices. The proposed circuit is simulated in CADENCE environment virtuoso using LFoundry 150 nm Complementary metal oxide semiconductor (CMOS) process technology.
ISSN:2079-9292