Sleep-wake stages classification using heart rate signals from pulse oximetry
The most important index of obstructive sleep apnea/hypopnea syndrome (OSAHS) is the apnea/hyponea index (AHI). The AHI is the number of apnea/hypopnea events per hour of sleep. Algorithms for the screening of OSAHS from pulse oximetry estimate an approximation to AHI counting the desaturation event...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2019-10-01
|
Series: | Heliyon |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2405844019361894 |
id |
doaj-59cab34a005049db893de5c16f81e859 |
---|---|
record_format |
Article |
spelling |
doaj-59cab34a005049db893de5c16f81e8592020-11-25T02:14:03ZengElsevierHeliyon2405-84402019-10-01510e02529Sleep-wake stages classification using heart rate signals from pulse oximetryRamiro Casal0Leandro E. Di Persia1Gastón Schlotthauer2Lab. de Señales y Dinámicas no Lineales, Facultad de Ingeniería, Universidad Nacional de Entre Ríos (UNER), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática, UNER, CONICET, Argentina; Corresponding author at: Lab. de Señales y Dinámicas no Lineales, Facultad de Ingeniería, Universidad Nacional de Entre Ríos (UNER), Argentina.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional, Universidad Nacional del Litoral, CONICET, ArgentinaLab. de Señales y Dinámicas no Lineales, Facultad de Ingeniería, Universidad Nacional de Entre Ríos (UNER), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática, UNER, CONICET, ArgentinaThe most important index of obstructive sleep apnea/hypopnea syndrome (OSAHS) is the apnea/hyponea index (AHI). The AHI is the number of apnea/hypopnea events per hour of sleep. Algorithms for the screening of OSAHS from pulse oximetry estimate an approximation to AHI counting the desaturation events without consider the sleep stage of the patient. This paper presents an automatic system to determine if a patient is awake or asleep using heart rate (HR) signals provided by pulse oximetry. In this study, 70 features are estimated using entropy and complexity measures, frequency domain and time-scale domain methods, and classical statistics. The dimension of feature space is reduced from 70 to 40 using three different schemes based on forward feature selection with support vector machine and feature importance with random forest. The algorithms were designed, trained and tested with 5000 patients from the Sleep Heart Health Study database. In the test stage, 10-fold cross validation method was applied obtaining performances up to 85.2% accuracy, 88.3% specificity, 79.0% sensitivity, 67.0% positive predictive value, and 91.3% negative predictive value. The results are encouraging, showing the possibility of using HR signals obtained from the same oximeter to determine the sleep stage of the patient, and thus potentially improving the estimation of AHI based on only pulse oximetry.http://www.sciencedirect.com/science/article/pii/S2405844019361894Computer scienceBiomedical engineeringSleep apneaPulse oximetryHeart rateAutomatic sleep staging |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ramiro Casal Leandro E. Di Persia Gastón Schlotthauer |
spellingShingle |
Ramiro Casal Leandro E. Di Persia Gastón Schlotthauer Sleep-wake stages classification using heart rate signals from pulse oximetry Heliyon Computer science Biomedical engineering Sleep apnea Pulse oximetry Heart rate Automatic sleep staging |
author_facet |
Ramiro Casal Leandro E. Di Persia Gastón Schlotthauer |
author_sort |
Ramiro Casal |
title |
Sleep-wake stages classification using heart rate signals from pulse oximetry |
title_short |
Sleep-wake stages classification using heart rate signals from pulse oximetry |
title_full |
Sleep-wake stages classification using heart rate signals from pulse oximetry |
title_fullStr |
Sleep-wake stages classification using heart rate signals from pulse oximetry |
title_full_unstemmed |
Sleep-wake stages classification using heart rate signals from pulse oximetry |
title_sort |
sleep-wake stages classification using heart rate signals from pulse oximetry |
publisher |
Elsevier |
series |
Heliyon |
issn |
2405-8440 |
publishDate |
2019-10-01 |
description |
The most important index of obstructive sleep apnea/hypopnea syndrome (OSAHS) is the apnea/hyponea index (AHI). The AHI is the number of apnea/hypopnea events per hour of sleep. Algorithms for the screening of OSAHS from pulse oximetry estimate an approximation to AHI counting the desaturation events without consider the sleep stage of the patient. This paper presents an automatic system to determine if a patient is awake or asleep using heart rate (HR) signals provided by pulse oximetry. In this study, 70 features are estimated using entropy and complexity measures, frequency domain and time-scale domain methods, and classical statistics. The dimension of feature space is reduced from 70 to 40 using three different schemes based on forward feature selection with support vector machine and feature importance with random forest. The algorithms were designed, trained and tested with 5000 patients from the Sleep Heart Health Study database. In the test stage, 10-fold cross validation method was applied obtaining performances up to 85.2% accuracy, 88.3% specificity, 79.0% sensitivity, 67.0% positive predictive value, and 91.3% negative predictive value. The results are encouraging, showing the possibility of using HR signals obtained from the same oximeter to determine the sleep stage of the patient, and thus potentially improving the estimation of AHI based on only pulse oximetry. |
topic |
Computer science Biomedical engineering Sleep apnea Pulse oximetry Heart rate Automatic sleep staging |
url |
http://www.sciencedirect.com/science/article/pii/S2405844019361894 |
work_keys_str_mv |
AT ramirocasal sleepwakestagesclassificationusingheartratesignalsfrompulseoximetry AT leandroedipersia sleepwakestagesclassificationusingheartratesignalsfrompulseoximetry AT gastonschlotthauer sleepwakestagesclassificationusingheartratesignalsfrompulseoximetry |
_version_ |
1724902352612229120 |