Sleep-wake stages classification using heart rate signals from pulse oximetry

The most important index of obstructive sleep apnea/hypopnea syndrome (OSAHS) is the apnea/hyponea index (AHI). The AHI is the number of apnea/hypopnea events per hour of sleep. Algorithms for the screening of OSAHS from pulse oximetry estimate an approximation to AHI counting the desaturation event...

Full description

Bibliographic Details
Main Authors: Ramiro Casal, Leandro E. Di Persia, Gastón Schlotthauer
Format: Article
Language:English
Published: Elsevier 2019-10-01
Series:Heliyon
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2405844019361894
id doaj-59cab34a005049db893de5c16f81e859
record_format Article
spelling doaj-59cab34a005049db893de5c16f81e8592020-11-25T02:14:03ZengElsevierHeliyon2405-84402019-10-01510e02529Sleep-wake stages classification using heart rate signals from pulse oximetryRamiro Casal0Leandro E. Di Persia1Gastón Schlotthauer2Lab. de Señales y Dinámicas no Lineales, Facultad de Ingeniería, Universidad Nacional de Entre Ríos (UNER), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática, UNER, CONICET, Argentina; Corresponding author at: Lab. de Señales y Dinámicas no Lineales, Facultad de Ingeniería, Universidad Nacional de Entre Ríos (UNER), Argentina.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional, Universidad Nacional del Litoral, CONICET, ArgentinaLab. de Señales y Dinámicas no Lineales, Facultad de Ingeniería, Universidad Nacional de Entre Ríos (UNER), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática, UNER, CONICET, ArgentinaThe most important index of obstructive sleep apnea/hypopnea syndrome (OSAHS) is the apnea/hyponea index (AHI). The AHI is the number of apnea/hypopnea events per hour of sleep. Algorithms for the screening of OSAHS from pulse oximetry estimate an approximation to AHI counting the desaturation events without consider the sleep stage of the patient. This paper presents an automatic system to determine if a patient is awake or asleep using heart rate (HR) signals provided by pulse oximetry. In this study, 70 features are estimated using entropy and complexity measures, frequency domain and time-scale domain methods, and classical statistics. The dimension of feature space is reduced from 70 to 40 using three different schemes based on forward feature selection with support vector machine and feature importance with random forest. The algorithms were designed, trained and tested with 5000 patients from the Sleep Heart Health Study database. In the test stage, 10-fold cross validation method was applied obtaining performances up to 85.2% accuracy, 88.3% specificity, 79.0% sensitivity, 67.0% positive predictive value, and 91.3% negative predictive value. The results are encouraging, showing the possibility of using HR signals obtained from the same oximeter to determine the sleep stage of the patient, and thus potentially improving the estimation of AHI based on only pulse oximetry.http://www.sciencedirect.com/science/article/pii/S2405844019361894Computer scienceBiomedical engineeringSleep apneaPulse oximetryHeart rateAutomatic sleep staging
collection DOAJ
language English
format Article
sources DOAJ
author Ramiro Casal
Leandro E. Di Persia
Gastón Schlotthauer
spellingShingle Ramiro Casal
Leandro E. Di Persia
Gastón Schlotthauer
Sleep-wake stages classification using heart rate signals from pulse oximetry
Heliyon
Computer science
Biomedical engineering
Sleep apnea
Pulse oximetry
Heart rate
Automatic sleep staging
author_facet Ramiro Casal
Leandro E. Di Persia
Gastón Schlotthauer
author_sort Ramiro Casal
title Sleep-wake stages classification using heart rate signals from pulse oximetry
title_short Sleep-wake stages classification using heart rate signals from pulse oximetry
title_full Sleep-wake stages classification using heart rate signals from pulse oximetry
title_fullStr Sleep-wake stages classification using heart rate signals from pulse oximetry
title_full_unstemmed Sleep-wake stages classification using heart rate signals from pulse oximetry
title_sort sleep-wake stages classification using heart rate signals from pulse oximetry
publisher Elsevier
series Heliyon
issn 2405-8440
publishDate 2019-10-01
description The most important index of obstructive sleep apnea/hypopnea syndrome (OSAHS) is the apnea/hyponea index (AHI). The AHI is the number of apnea/hypopnea events per hour of sleep. Algorithms for the screening of OSAHS from pulse oximetry estimate an approximation to AHI counting the desaturation events without consider the sleep stage of the patient. This paper presents an automatic system to determine if a patient is awake or asleep using heart rate (HR) signals provided by pulse oximetry. In this study, 70 features are estimated using entropy and complexity measures, frequency domain and time-scale domain methods, and classical statistics. The dimension of feature space is reduced from 70 to 40 using three different schemes based on forward feature selection with support vector machine and feature importance with random forest. The algorithms were designed, trained and tested with 5000 patients from the Sleep Heart Health Study database. In the test stage, 10-fold cross validation method was applied obtaining performances up to 85.2% accuracy, 88.3% specificity, 79.0% sensitivity, 67.0% positive predictive value, and 91.3% negative predictive value. The results are encouraging, showing the possibility of using HR signals obtained from the same oximeter to determine the sleep stage of the patient, and thus potentially improving the estimation of AHI based on only pulse oximetry.
topic Computer science
Biomedical engineering
Sleep apnea
Pulse oximetry
Heart rate
Automatic sleep staging
url http://www.sciencedirect.com/science/article/pii/S2405844019361894
work_keys_str_mv AT ramirocasal sleepwakestagesclassificationusingheartratesignalsfrompulseoximetry
AT leandroedipersia sleepwakestagesclassificationusingheartratesignalsfrompulseoximetry
AT gastonschlotthauer sleepwakestagesclassificationusingheartratesignalsfrompulseoximetry
_version_ 1724902352612229120