Summary: | BackgroundClinical staging is essential for clinical decisions but remains imprecise. We purposed to construct a novel survival prediction model for improving clinical staging system (cTNM) for patients with esophageal adenocarcioma (EAC).MethodsA total of 4180 patients diagnosed with EAC were extracted from the Surveillance, Epidemiology, and End Results (SEER) database and included as the training cohort. Significant prognostic variables were identified for nomogram model development using multivariable Cox regression. The model was validated internally by bootstrap resampling, and then subjected to external validation with a separate cohort of 886 patients from 2 institutions in China. The prognostic performance was measured by concordance index (C-index), Akaike information criterion (AIC) and calibration plots. Different risk groups were stratified by the nomogram scores.ResultsA total of six variables were determined related with survival and entered into the nomogram construction. The calibration curves showed satisfied agreement between nomogram-predicted survival and actual observed survival for 1-, 3-, and 5-year overall survival. By calculating the AIC and C-index values, our nomogram presented superior discriminative and risk-stratifying ability than current TNM staging system. Significant distinctions in survival curves were observed between different risk subgroups stratified by nomogram scores.ConclusionThe established and validated nomogram presented better risk-stratifying ability than current clinical staging system, and could provide a convenient and reliable tool for individual survival prediction and treatment strategy making.
|