A kernel for multi-parameter persistent homology

Topological data analysis and its main method, persistent homology, provide a toolkit for computing topological information of high-dimensional and noisy data sets. Kernels for one-parameter persistent homology have been established to connect persistent homology with machine learning techniques wit...

Full description

Bibliographic Details
Main Authors: René Corbet, Ulderico Fugacci, Michael Kerber, Claudia Landi, Bei Wang
Format: Article
Language:English
Published: Elsevier 2019-12-01
Series:Computers & Graphics: X
Online Access:http://www.sciencedirect.com/science/article/pii/S2590148619300056
id doaj-59b78c301e894d71aa793197d302d256
record_format Article
spelling doaj-59b78c301e894d71aa793197d302d2562020-11-25T01:30:40ZengElsevierComputers & Graphics: X2590-14862019-12-012A kernel for multi-parameter persistent homologyRené Corbet0Ulderico Fugacci1Michael Kerber2Claudia Landi3Bei Wang4Graz University of Technology, AustriaGraz University of Technology, AustriaGraz University of Technology, AustriaUniversity of Modena and Reggio Emilia, ItalyCorresponding author.; University of Utah, USATopological data analysis and its main method, persistent homology, provide a toolkit for computing topological information of high-dimensional and noisy data sets. Kernels for one-parameter persistent homology have been established to connect persistent homology with machine learning techniques with applicability on shape analysis, recognition and classification. We contribute a kernel construction for multi-parameter persistence by integrating a one-parameter kernel weighted along straight lines. We prove that our kernel is stable and efficiently computable, which establishes a theoretical connection between topological data analysis and machine learning for multivariate data analysis. Keywords: Topological data analysis, Machine learning, Persistent homology, Multivariate analysishttp://www.sciencedirect.com/science/article/pii/S2590148619300056
collection DOAJ
language English
format Article
sources DOAJ
author René Corbet
Ulderico Fugacci
Michael Kerber
Claudia Landi
Bei Wang
spellingShingle René Corbet
Ulderico Fugacci
Michael Kerber
Claudia Landi
Bei Wang
A kernel for multi-parameter persistent homology
Computers & Graphics: X
author_facet René Corbet
Ulderico Fugacci
Michael Kerber
Claudia Landi
Bei Wang
author_sort René Corbet
title A kernel for multi-parameter persistent homology
title_short A kernel for multi-parameter persistent homology
title_full A kernel for multi-parameter persistent homology
title_fullStr A kernel for multi-parameter persistent homology
title_full_unstemmed A kernel for multi-parameter persistent homology
title_sort kernel for multi-parameter persistent homology
publisher Elsevier
series Computers & Graphics: X
issn 2590-1486
publishDate 2019-12-01
description Topological data analysis and its main method, persistent homology, provide a toolkit for computing topological information of high-dimensional and noisy data sets. Kernels for one-parameter persistent homology have been established to connect persistent homology with machine learning techniques with applicability on shape analysis, recognition and classification. We contribute a kernel construction for multi-parameter persistence by integrating a one-parameter kernel weighted along straight lines. We prove that our kernel is stable and efficiently computable, which establishes a theoretical connection between topological data analysis and machine learning for multivariate data analysis. Keywords: Topological data analysis, Machine learning, Persistent homology, Multivariate analysis
url http://www.sciencedirect.com/science/article/pii/S2590148619300056
work_keys_str_mv AT renecorbet akernelformultiparameterpersistenthomology
AT uldericofugacci akernelformultiparameterpersistenthomology
AT michaelkerber akernelformultiparameterpersistenthomology
AT claudialandi akernelformultiparameterpersistenthomology
AT beiwang akernelformultiparameterpersistenthomology
AT renecorbet kernelformultiparameterpersistenthomology
AT uldericofugacci kernelformultiparameterpersistenthomology
AT michaelkerber kernelformultiparameterpersistenthomology
AT claudialandi kernelformultiparameterpersistenthomology
AT beiwang kernelformultiparameterpersistenthomology
_version_ 1725090719331254272