A kernel for multi-parameter persistent homology
Topological data analysis and its main method, persistent homology, provide a toolkit for computing topological information of high-dimensional and noisy data sets. Kernels for one-parameter persistent homology have been established to connect persistent homology with machine learning techniques wit...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2019-12-01
|
Series: | Computers & Graphics: X |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2590148619300056 |
id |
doaj-59b78c301e894d71aa793197d302d256 |
---|---|
record_format |
Article |
spelling |
doaj-59b78c301e894d71aa793197d302d2562020-11-25T01:30:40ZengElsevierComputers & Graphics: X2590-14862019-12-012A kernel for multi-parameter persistent homologyRené Corbet0Ulderico Fugacci1Michael Kerber2Claudia Landi3Bei Wang4Graz University of Technology, AustriaGraz University of Technology, AustriaGraz University of Technology, AustriaUniversity of Modena and Reggio Emilia, ItalyCorresponding author.; University of Utah, USATopological data analysis and its main method, persistent homology, provide a toolkit for computing topological information of high-dimensional and noisy data sets. Kernels for one-parameter persistent homology have been established to connect persistent homology with machine learning techniques with applicability on shape analysis, recognition and classification. We contribute a kernel construction for multi-parameter persistence by integrating a one-parameter kernel weighted along straight lines. We prove that our kernel is stable and efficiently computable, which establishes a theoretical connection between topological data analysis and machine learning for multivariate data analysis. Keywords: Topological data analysis, Machine learning, Persistent homology, Multivariate analysishttp://www.sciencedirect.com/science/article/pii/S2590148619300056 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
René Corbet Ulderico Fugacci Michael Kerber Claudia Landi Bei Wang |
spellingShingle |
René Corbet Ulderico Fugacci Michael Kerber Claudia Landi Bei Wang A kernel for multi-parameter persistent homology Computers & Graphics: X |
author_facet |
René Corbet Ulderico Fugacci Michael Kerber Claudia Landi Bei Wang |
author_sort |
René Corbet |
title |
A kernel for multi-parameter persistent homology |
title_short |
A kernel for multi-parameter persistent homology |
title_full |
A kernel for multi-parameter persistent homology |
title_fullStr |
A kernel for multi-parameter persistent homology |
title_full_unstemmed |
A kernel for multi-parameter persistent homology |
title_sort |
kernel for multi-parameter persistent homology |
publisher |
Elsevier |
series |
Computers & Graphics: X |
issn |
2590-1486 |
publishDate |
2019-12-01 |
description |
Topological data analysis and its main method, persistent homology, provide a toolkit for computing topological information of high-dimensional and noisy data sets. Kernels for one-parameter persistent homology have been established to connect persistent homology with machine learning techniques with applicability on shape analysis, recognition and classification. We contribute a kernel construction for multi-parameter persistence by integrating a one-parameter kernel weighted along straight lines. We prove that our kernel is stable and efficiently computable, which establishes a theoretical connection between topological data analysis and machine learning for multivariate data analysis. Keywords: Topological data analysis, Machine learning, Persistent homology, Multivariate analysis |
url |
http://www.sciencedirect.com/science/article/pii/S2590148619300056 |
work_keys_str_mv |
AT renecorbet akernelformultiparameterpersistenthomology AT uldericofugacci akernelformultiparameterpersistenthomology AT michaelkerber akernelformultiparameterpersistenthomology AT claudialandi akernelformultiparameterpersistenthomology AT beiwang akernelformultiparameterpersistenthomology AT renecorbet kernelformultiparameterpersistenthomology AT uldericofugacci kernelformultiparameterpersistenthomology AT michaelkerber kernelformultiparameterpersistenthomology AT claudialandi kernelformultiparameterpersistenthomology AT beiwang kernelformultiparameterpersistenthomology |
_version_ |
1725090719331254272 |