Development of Genetically Engineered Mice Lacking All Three Nitric Oxide Synthases

Nitric oxide (NO) is produced in almost all tissues and organs, exerting multiple biological actions under both physiological and pathological conditions. NO is synthesized by three different isoforms of NO synthase (NOS): neuronal, inducible, and endothelial NOSs. Due to the substantial compensator...

Full description

Bibliographic Details
Main Authors: Masato Tsutsui, Hiroaki Shimokawa, Tsuyoshi Morishita, Yasuhide Nakashima, Nobuyuki Yanagihara
Format: Article
Language:English
Published: Elsevier 2006-01-01
Series:Journal of Pharmacological Sciences
Online Access:http://www.sciencedirect.com/science/article/pii/S1347861319343889
Description
Summary:Nitric oxide (NO) is produced in almost all tissues and organs, exerting multiple biological actions under both physiological and pathological conditions. NO is synthesized by three different isoforms of NO synthase (NOS): neuronal, inducible, and endothelial NOSs. Due to the substantial compensatory interactions among the NOS isoforms, the ultimate roles of endogenous NO in our body still remain to be fully elucidated. To address this point, we have successfully developed mice in which all three NOS genes are completely disrupted. NOS expression and activities were totally absent in the triply n/i/eNOS−/− mice before and after treatment with lipopolysaccharide. While the triply n/i/eNOS−/− mice were viable, their survival and fertility rates were markedly reduced as compared with wild-type mice. The phenotypes of those mice that we first noticed were polyuria, polydipsia, and renal unresponsiveness to vasopressin, characteristics consistent with nephrogenic diabetes insipidus. We subsequently observed that in those mice, arteriosclerosis is spontaneously developed with a clustering of cardiovascular risk factors. These results provide the first evidence that the systemic deletion of all three NOSs causes a variety of cardiovascular diseases in mice, demonstrating a critical role of the endogenous NOSs system in maintaining cardiovascular homeostasis. Keywords:: nitric oxide synthase, knockout mouse, cardiovascular disease, nephrogenic diabetes insipidus, metabolic syndrome
ISSN:1347-8613