ANALISIS OBYEK DAN KARAKTERISTIK DARI MATRIKS INDIKATOR MENGGUNAKAN HYBRID ANALISIS KELAS LATEN DENGAN BIPLOT ANALISIS KOMPONEN UTAMA (BIPLOT AKU)

Analysis of the object and the characteristics will be much easier, efficient, and informative when based on a perceptual map, which can display objects and characteristics. Indicator matrix is a matrix where the rows represent objects and the columns is a dummy variable representing characteristics...

Full description

Bibliographic Details
Main Authors: Irlandia Ginanjar, Anindya Apriliyanti Pravitasari, Aleknaek Martuah
Format: Article
Language:English
Published: Universitas Diponegoro 2013-12-01
Series:Media Statistika
Online Access:https://ejournal.undip.ac.id/index.php/media_statistika/article/view/7642
id doaj-59a57422869d45c7b78b5c3061ce319d
record_format Article
spelling doaj-59a57422869d45c7b78b5c3061ce319d2020-11-25T04:00:32ZengUniversitas DiponegoroMedia Statistika1979-36932477-06472013-12-0162819010.14710/medstat.6.2.81-906597ANALISIS OBYEK DAN KARAKTERISTIK DARI MATRIKS INDIKATOR MENGGUNAKAN HYBRID ANALISIS KELAS LATEN DENGAN BIPLOT ANALISIS KOMPONEN UTAMA (BIPLOT AKU)Irlandia GinanjarAnindya Apriliyanti PravitasariAleknaek MartuahAnalysis of the object and the characteristics will be much easier, efficient, and informative when based on a perceptual map, which can display objects and characteristics. Indicator matrix is a matrix where the rows represent objects and the columns is a dummy variable representing characteristics. This article writes about techniques to make perceptual map from indicator matrix, where that can provide information about the similarity between objects, the diversity of each characteristic, correlations between the characteristics, and characteristic values ​​for each object, the techniques we call Hybrid Latent Class Cluster with PCA Biplot, where Latent Class Cluster Analysis is used to transform the indicator matrix to cross section matrix, where rows represent the objects and columns represent the characteristics, the observation cells is the probability of characteristic for each object, next the cross section matrix mapped using Principal Component Analysis Biplot (PCA Biplot).   Key Words: Hybrid Latent Class Cluster with PCA Biplot, Latent Class Cluster Analysis, Biplot Principal Component Analysis, Indicator Matrix.https://ejournal.undip.ac.id/index.php/media_statistika/article/view/7642
collection DOAJ
language English
format Article
sources DOAJ
author Irlandia Ginanjar
Anindya Apriliyanti Pravitasari
Aleknaek Martuah
spellingShingle Irlandia Ginanjar
Anindya Apriliyanti Pravitasari
Aleknaek Martuah
ANALISIS OBYEK DAN KARAKTERISTIK DARI MATRIKS INDIKATOR MENGGUNAKAN HYBRID ANALISIS KELAS LATEN DENGAN BIPLOT ANALISIS KOMPONEN UTAMA (BIPLOT AKU)
Media Statistika
author_facet Irlandia Ginanjar
Anindya Apriliyanti Pravitasari
Aleknaek Martuah
author_sort Irlandia Ginanjar
title ANALISIS OBYEK DAN KARAKTERISTIK DARI MATRIKS INDIKATOR MENGGUNAKAN HYBRID ANALISIS KELAS LATEN DENGAN BIPLOT ANALISIS KOMPONEN UTAMA (BIPLOT AKU)
title_short ANALISIS OBYEK DAN KARAKTERISTIK DARI MATRIKS INDIKATOR MENGGUNAKAN HYBRID ANALISIS KELAS LATEN DENGAN BIPLOT ANALISIS KOMPONEN UTAMA (BIPLOT AKU)
title_full ANALISIS OBYEK DAN KARAKTERISTIK DARI MATRIKS INDIKATOR MENGGUNAKAN HYBRID ANALISIS KELAS LATEN DENGAN BIPLOT ANALISIS KOMPONEN UTAMA (BIPLOT AKU)
title_fullStr ANALISIS OBYEK DAN KARAKTERISTIK DARI MATRIKS INDIKATOR MENGGUNAKAN HYBRID ANALISIS KELAS LATEN DENGAN BIPLOT ANALISIS KOMPONEN UTAMA (BIPLOT AKU)
title_full_unstemmed ANALISIS OBYEK DAN KARAKTERISTIK DARI MATRIKS INDIKATOR MENGGUNAKAN HYBRID ANALISIS KELAS LATEN DENGAN BIPLOT ANALISIS KOMPONEN UTAMA (BIPLOT AKU)
title_sort analisis obyek dan karakteristik dari matriks indikator menggunakan hybrid analisis kelas laten dengan biplot analisis komponen utama (biplot aku)
publisher Universitas Diponegoro
series Media Statistika
issn 1979-3693
2477-0647
publishDate 2013-12-01
description Analysis of the object and the characteristics will be much easier, efficient, and informative when based on a perceptual map, which can display objects and characteristics. Indicator matrix is a matrix where the rows represent objects and the columns is a dummy variable representing characteristics. This article writes about techniques to make perceptual map from indicator matrix, where that can provide information about the similarity between objects, the diversity of each characteristic, correlations between the characteristics, and characteristic values ​​for each object, the techniques we call Hybrid Latent Class Cluster with PCA Biplot, where Latent Class Cluster Analysis is used to transform the indicator matrix to cross section matrix, where rows represent the objects and columns represent the characteristics, the observation cells is the probability of characteristic for each object, next the cross section matrix mapped using Principal Component Analysis Biplot (PCA Biplot).   Key Words: Hybrid Latent Class Cluster with PCA Biplot, Latent Class Cluster Analysis, Biplot Principal Component Analysis, Indicator Matrix.
url https://ejournal.undip.ac.id/index.php/media_statistika/article/view/7642
work_keys_str_mv AT irlandiaginanjar analisisobyekdankarakteristikdarimatriksindikatormenggunakanhybridanalisiskelaslatendenganbiplotanalisiskomponenutamabiplotaku
AT anindyaapriliyantipravitasari analisisobyekdankarakteristikdarimatriksindikatormenggunakanhybridanalisiskelaslatendenganbiplotanalisiskomponenutamabiplotaku
AT aleknaekmartuah analisisobyekdankarakteristikdarimatriksindikatormenggunakanhybridanalisiskelaslatendenganbiplotanalisiskomponenutamabiplotaku
_version_ 1724450003066290176