Risk Assessment of Internet Credit Based on Big Data Analysis

In recent years, network technology has continued to develop, and Internet finance has rapidly developed into a new business area. Internet credit is one of the important ways for banks to conduct business, and the scale of online credit has continued to expand. Due to the existence of various unpre...

Full description

Bibliographic Details
Main Authors: HAORU WANG, Zhixuan Yi, YUJIA WEI, Yao Tianpeng, Shuoheng Zhao, qiang Xuzhi
Format: Article
Language:English
Published: EDP Sciences 2020-01-01
Series:E3S Web of Conferences
Online Access:https://www.e3s-conferences.org/articles/e3sconf/pdf/2020/74/e3sconf_ebldm2020_01012.pdf
Description
Summary:In recent years, network technology has continued to develop, and Internet finance has rapidly developed into a new business area. Internet credit is one of the important ways for banks to conduct business, and the scale of online credit has continued to expand. Due to the existence of various unpredictable factors, frequent emergencies, and online financial fraud, the overall market risk in the field of online credit has increased, and the rate of non-performing loans has continued to increase. Online financial fraud cases show that online credit risk has become one of the most prominent risks in the operation of commercial banks, which has a direct impact on the stability and development of commercial banks. We can build a bank database system based on big data, introduce professional big data analysis technical personnel, and constantly improve the big data sharing analysis platform, so that commercial banks can use system data more fully and effectively, and facilitate relevant business personnel to use big data technology for analysis and calculation. Big data is constantly produced, which provides basic materials for online credit risk assessment. Big data analysis technology is gradually mature, and it has the necessary conditions for online credit risk assessment. Based on the theories and technologies related to big data analysis, this paper comprehensively evaluates the online credit risk in the form of example data analysis, thereby effectively reducing the online credit risk coefficient.
ISSN:2267-1242