<it>SmartMIMO</it>: An Energy-Aware Adaptive MIMO-OFDM Radio Link Control for Next-Generation Wireless Local Area Networks
<p/> <p>Multiantenna systems and more particularly those operating on multiple input and multiple output (MIMO) channels are currently a must to improve wireless links spectrum efficiency and/or robustness. There exists a fundamental tradeoff between potential spectrum efficiency and rob...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2007-01-01
|
Series: | EURASIP Journal on Wireless Communications and Networking |
Online Access: | http://jwcn.eurasipjournals.com/content/2007/098186 |
id |
doaj-598c53c3d87f48b7a8c9e103e6346d0e |
---|---|
record_format |
Article |
spelling |
doaj-598c53c3d87f48b7a8c9e103e6346d0e2020-11-24T22:12:57ZengSpringerOpenEURASIP Journal on Wireless Communications and Networking1687-14721687-14992007-01-0120071098186<it>SmartMIMO</it>: An Energy-Aware Adaptive MIMO-OFDM Radio Link Control for Next-Generation Wireless Local Area NetworksDehaene WimBougard BrunoLenoir GregoryDejonghe AntoinePerre LiesbetVanderCatthoor Francky<p/> <p>Multiantenna systems and more particularly those operating on multiple input and multiple output (MIMO) channels are currently a must to improve wireless links spectrum efficiency and/or robustness. There exists a fundamental tradeoff between potential spectrum efficiency and robustness increase. However, multiantenna techniques also come with an overhead in silicon implementation area and power consumption due, at least, to the duplication of part of the transmitter and receiver radio front-ends. Although the area overhead may be acceptable in view of the performance improvement, low power consumption must be preserved for integration in nomadic devices. In this case, it is the tradeoff between performance (e.g., the net throughput on top of the medium access control layer) and average power consumption that really matters. It has been shown that adaptive schemes were mandatory to avoid that multiantenna techniques hamper this system tradeoff. In this paper, we derive <it>smartMIMO</it>: an adaptive multiantenna approach which, next to simply adapting the modulation and code rate as traditionally considered, decides packet-per-packet, depending on the MIMO channel state, to use either space-division multiplexing (increasing spectrum efficiency), space-time coding (increasing robustness), or to stick to single-antenna transmission. Contrarily to many of such adaptive schemes, the focus is set on using multiantenna transmission to improve the link energy efficiency in real operation conditions. Based on a model calibrated on an existing reconfigurable multiantenna transceiver setup, the link energy efficiency with the proposed scheme is shown to be improved by up to 30% when compared to nonadaptive schemes. The average throughput is, on the other hand, improved by up to 50% when compared to single-antenna transmission.</p> http://jwcn.eurasipjournals.com/content/2007/098186 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Dehaene Wim Bougard Bruno Lenoir Gregory Dejonghe Antoine Perre LiesbetVander Catthoor Francky |
spellingShingle |
Dehaene Wim Bougard Bruno Lenoir Gregory Dejonghe Antoine Perre LiesbetVander Catthoor Francky <it>SmartMIMO</it>: An Energy-Aware Adaptive MIMO-OFDM Radio Link Control for Next-Generation Wireless Local Area Networks EURASIP Journal on Wireless Communications and Networking |
author_facet |
Dehaene Wim Bougard Bruno Lenoir Gregory Dejonghe Antoine Perre LiesbetVander Catthoor Francky |
author_sort |
Dehaene Wim |
title |
<it>SmartMIMO</it>: An Energy-Aware Adaptive MIMO-OFDM Radio Link Control for Next-Generation Wireless Local Area Networks |
title_short |
<it>SmartMIMO</it>: An Energy-Aware Adaptive MIMO-OFDM Radio Link Control for Next-Generation Wireless Local Area Networks |
title_full |
<it>SmartMIMO</it>: An Energy-Aware Adaptive MIMO-OFDM Radio Link Control for Next-Generation Wireless Local Area Networks |
title_fullStr |
<it>SmartMIMO</it>: An Energy-Aware Adaptive MIMO-OFDM Radio Link Control for Next-Generation Wireless Local Area Networks |
title_full_unstemmed |
<it>SmartMIMO</it>: An Energy-Aware Adaptive MIMO-OFDM Radio Link Control for Next-Generation Wireless Local Area Networks |
title_sort |
<it>smartmimo</it>: an energy-aware adaptive mimo-ofdm radio link control for next-generation wireless local area networks |
publisher |
SpringerOpen |
series |
EURASIP Journal on Wireless Communications and Networking |
issn |
1687-1472 1687-1499 |
publishDate |
2007-01-01 |
description |
<p/> <p>Multiantenna systems and more particularly those operating on multiple input and multiple output (MIMO) channels are currently a must to improve wireless links spectrum efficiency and/or robustness. There exists a fundamental tradeoff between potential spectrum efficiency and robustness increase. However, multiantenna techniques also come with an overhead in silicon implementation area and power consumption due, at least, to the duplication of part of the transmitter and receiver radio front-ends. Although the area overhead may be acceptable in view of the performance improvement, low power consumption must be preserved for integration in nomadic devices. In this case, it is the tradeoff between performance (e.g., the net throughput on top of the medium access control layer) and average power consumption that really matters. It has been shown that adaptive schemes were mandatory to avoid that multiantenna techniques hamper this system tradeoff. In this paper, we derive <it>smartMIMO</it>: an adaptive multiantenna approach which, next to simply adapting the modulation and code rate as traditionally considered, decides packet-per-packet, depending on the MIMO channel state, to use either space-division multiplexing (increasing spectrum efficiency), space-time coding (increasing robustness), or to stick to single-antenna transmission. Contrarily to many of such adaptive schemes, the focus is set on using multiantenna transmission to improve the link energy efficiency in real operation conditions. Based on a model calibrated on an existing reconfigurable multiantenna transceiver setup, the link energy efficiency with the proposed scheme is shown to be improved by up to 30% when compared to nonadaptive schemes. The average throughput is, on the other hand, improved by up to 50% when compared to single-antenna transmission.</p> |
url |
http://jwcn.eurasipjournals.com/content/2007/098186 |
work_keys_str_mv |
AT dehaenewim itsmartmimoitanenergyawareadaptivemimoofdmradiolinkcontrolfornextgenerationwirelesslocalareanetworks AT bougardbruno itsmartmimoitanenergyawareadaptivemimoofdmradiolinkcontrolfornextgenerationwirelesslocalareanetworks AT lenoirgregory itsmartmimoitanenergyawareadaptivemimoofdmradiolinkcontrolfornextgenerationwirelesslocalareanetworks AT dejongheantoine itsmartmimoitanenergyawareadaptivemimoofdmradiolinkcontrolfornextgenerationwirelesslocalareanetworks AT perreliesbetvander itsmartmimoitanenergyawareadaptivemimoofdmradiolinkcontrolfornextgenerationwirelesslocalareanetworks AT catthoorfrancky itsmartmimoitanenergyawareadaptivemimoofdmradiolinkcontrolfornextgenerationwirelesslocalareanetworks |
_version_ |
1725801779866632192 |