The Effect of Additional Dead Space on Respiratory Exchange Ratio and Carbon Dioxide Production Due to Training
The purpose of the study was to investigate the effects of implementing additional respiratory dead space during cycloergometry-based aerobic training. The primary outcome measures were respiratory exchange ratio (RER) and carbon dioxide production (VCO2). Two groups of young healthy males: Experime...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Uludag
2014-03-01
|
Series: | Journal of Sports Science and Medicine |
Subjects: | |
Online Access: | http://www.jssm.org/research.php?id=jssm-13-36.xml |
id |
doaj-59875637e624455da51cf63f644ab274 |
---|---|
record_format |
Article |
spelling |
doaj-59875637e624455da51cf63f644ab2742020-11-24T22:43:52ZengUniversity of UludagJournal of Sports Science and Medicine1303-29681303-29682014-03-011313643The Effect of Additional Dead Space on Respiratory Exchange Ratio and Carbon Dioxide Production Due to TrainingLukasz Smolka0Jacek BorkowskiMarek ZatonUniversity School of Physical Education in Wroclaw, Department of Physiology and Biochemistry, 35 J.I. Paderewski Avenue, 51-612 Wroclaw, PolandThe purpose of the study was to investigate the effects of implementing additional respiratory dead space during cycloergometry-based aerobic training. The primary outcome measures were respiratory exchange ratio (RER) and carbon dioxide production (VCO2). Two groups of young healthy males: Experimental (Exp, n = 15) and Control (Con, n = 15), participated in this study. The training consisted of 12 sessions, performed twice a week for 6 weeks. A single training session consisted of continuous, constant-rate exercise on a cycle ergometer at 60% of VO2max which was maintained for 30 minutes. Subjects in Exp group were breathing through additional respiratory dead space (1200ml), while subjects in Con group were breathing without additional dead space. Pre-test and two post-training incremental exercise tests were performed for the detection of gas exchange variables. In all training sessions, pCO2 was higher and blood pH was lower in the Exp group (p < 0.001) ensuring respiratory acidosis. A 12-session training program resulted in significant increase in performance time in both groups (from 17”29 ± 1”31 to 18”47 ± 1”37 in Exp; p=0.02 and from 17”20 ± 1”18 to 18”45 ± 1”44 in Con; p = 0.02), but has not revealed a significant difference in RER and VCO2 in both post-training tests, performed at rest and during submaximal workload. We interpret the lack of difference in post-training values of RER and VCO2 between groups as an absence of inhibition in glycolysis and glycogenolysis during exercise with additional dead space.http://www.jssm.org/research.php?id=jssm-13-36.xmlAdditional dead spacehypercapniarespiratory acidosisaerobic trainingexercise physiology |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Lukasz Smolka Jacek Borkowski Marek Zaton |
spellingShingle |
Lukasz Smolka Jacek Borkowski Marek Zaton The Effect of Additional Dead Space on Respiratory Exchange Ratio and Carbon Dioxide Production Due to Training Journal of Sports Science and Medicine Additional dead space hypercapnia respiratory acidosis aerobic training exercise physiology |
author_facet |
Lukasz Smolka Jacek Borkowski Marek Zaton |
author_sort |
Lukasz Smolka |
title |
The Effect of Additional Dead Space on Respiratory Exchange Ratio and Carbon Dioxide Production Due to Training |
title_short |
The Effect of Additional Dead Space on Respiratory Exchange Ratio and Carbon Dioxide Production Due to Training |
title_full |
The Effect of Additional Dead Space on Respiratory Exchange Ratio and Carbon Dioxide Production Due to Training |
title_fullStr |
The Effect of Additional Dead Space on Respiratory Exchange Ratio and Carbon Dioxide Production Due to Training |
title_full_unstemmed |
The Effect of Additional Dead Space on Respiratory Exchange Ratio and Carbon Dioxide Production Due to Training |
title_sort |
effect of additional dead space on respiratory exchange ratio and carbon dioxide production due to training |
publisher |
University of Uludag |
series |
Journal of Sports Science and Medicine |
issn |
1303-2968 1303-2968 |
publishDate |
2014-03-01 |
description |
The purpose of the study was to investigate the effects of implementing additional respiratory dead space during cycloergometry-based aerobic training. The primary outcome measures were respiratory exchange ratio (RER) and carbon dioxide production (VCO2). Two groups of young healthy males: Experimental (Exp, n = 15) and Control (Con, n = 15), participated in this study. The training consisted of 12 sessions, performed twice a week for 6 weeks. A single training session consisted of continuous, constant-rate exercise on a cycle ergometer at 60% of VO2max which was maintained for 30 minutes. Subjects in Exp group were breathing through additional respiratory dead space (1200ml), while subjects in Con group were breathing without additional dead space. Pre-test and two post-training incremental exercise tests were performed for the detection of gas exchange variables. In all training sessions, pCO2 was higher and blood pH was lower in the Exp group (p < 0.001) ensuring respiratory acidosis. A 12-session training program resulted in significant increase in performance time in both groups (from 17”29 ± 1”31 to 18”47 ± 1”37 in Exp; p=0.02 and from 17”20 ± 1”18 to 18”45 ± 1”44 in Con; p = 0.02), but has not revealed a significant difference in RER and VCO2 in both post-training tests, performed at rest and during submaximal workload. We interpret the lack of difference in post-training values of RER and VCO2 between groups as an absence of inhibition in glycolysis and glycogenolysis during exercise with additional dead space. |
topic |
Additional dead space hypercapnia respiratory acidosis aerobic training exercise physiology |
url |
http://www.jssm.org/research.php?id=jssm-13-36.xml |
work_keys_str_mv |
AT lukaszsmolka theeffectofadditionaldeadspaceonrespiratoryexchangeratioandcarbondioxideproductionduetotraining AT jacekborkowski theeffectofadditionaldeadspaceonrespiratoryexchangeratioandcarbondioxideproductionduetotraining AT marekzaton theeffectofadditionaldeadspaceonrespiratoryexchangeratioandcarbondioxideproductionduetotraining AT lukaszsmolka effectofadditionaldeadspaceonrespiratoryexchangeratioandcarbondioxideproductionduetotraining AT jacekborkowski effectofadditionaldeadspaceonrespiratoryexchangeratioandcarbondioxideproductionduetotraining AT marekzaton effectofadditionaldeadspaceonrespiratoryexchangeratioandcarbondioxideproductionduetotraining |
_version_ |
1725694141145284608 |