Experimental Investigation on the Freeze–Thaw Resistance of Steel Fibers Reinforced Rubber Concrete

The reuse of rubber in concrete results in two major opposing effects: an enhancement in durability and a reduction in mechanical strength. In order to strengthen the mechanical properties of rubber concrete, steel fibers were added in this research. The compressive strength, the four-point bending...

Full description

Bibliographic Details
Main Authors: Tao Luo, Chi Zhang, Chaowei Sun, Xinchao Zheng, Yanjun Ji, Xiaosa Yuan
Format: Article
Language:English
Published: MDPI AG 2020-03-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/13/5/1260
Description
Summary:The reuse of rubber in concrete results in two major opposing effects: an enhancement in durability and a reduction in mechanical strength. In order to strengthen the mechanical properties of rubber concrete, steel fibers were added in this research. The compressive strength, the four-point bending strength, the mass loss rate, and the relative dynamic elastic modulus of steel fiber reinforced rubber concrete, subjected to cyclic freezing and thawing, were tested. The effects of the content of steel fibers on the freeze−thaw resistance are discussed. The microstructure damage was captured and analyzed by Industrial Computed Tomography (ICT) scanning. Results show that the addition of 2.0% steel fibers can increase the compressive strength of rubber concrete by 26.6% if there is no freeze−thaw effect, but the strengthening effect disappears when subjected to cyclic freeze−thaw. The enhancement of steel fibers on the four-point bending strength is effective under cyclic freeze−thaw. The effect of steel fibers is positive on the mass loss rate but negative on the relative dynamic elastic modulus.
ISSN:1996-1944