Handrail detection and pose estimation for a free-flying robot

We present a handrail detection and pose estimation algorithm for the free-flying Astrobee robots that will operate inside the International Space Station. The Astrobee will be equipped with a single time-of-flight depth sensor and a compliant perching arm to grab the International Space Station han...

Full description

Bibliographic Details
Main Authors: Dong-Hyun Lee, Brian Coltin, Theodore Morse, In-Won Park, Lorenzo Flückiger, Trey Smith
Format: Article
Language:English
Published: SAGE Publishing 2018-01-01
Series:International Journal of Advanced Robotic Systems
Online Access:https://doi.org/10.1177/1729881417753691
Description
Summary:We present a handrail detection and pose estimation algorithm for the free-flying Astrobee robots that will operate inside the International Space Station. The Astrobee will be equipped with a single time-of-flight depth sensor and a compliant perching arm to grab the International Space Station handrails. Autonomous perching enables a free-flying robot to minimize power consumption by holding its position without using propulsion. Astrobee is a small robot with many competing demands on its computing, power, and volume resources. Therefore, for perching, we were limited to using a single compact sensor and a lightweight detection algorithm. Moreover, the handrails on the International Space Station are surrounded by various instruments and cables, and the lighting conditions change significantly depending on the light sources, time, and robot location. The proposed algorithm uses a time-of-flight depth sensor for handrail perception under varying lighting conditions and utilizes the geometric characteristics of the handrails for robust detection and pose estimation. We demonstrate the robustness and accuracy of the algorithm in various environment scenarios.
ISSN:1729-8814