The wiring diagram of a glomerular olfactory system

The sense of smell enables animals to react to long-distance cues according to learned and innate valences. Here, we have mapped with electron microscopy the complete wiring diagram of the Drosophila larval antennal lobe, an olfactory neuropil similar to the vertebrate olfactory bulb. We found a can...

Full description

Bibliographic Details
Main Authors: Matthew E Berck, Avinash Khandelwal, Lindsey Claus, Luis Hernandez-Nunez, Guangwei Si, Christopher J Tabone, Feng Li, James W Truman, Rick D Fetter, Matthieu Louis, Aravinthan DT Samuel, Albert Cardona
Format: Article
Language:English
Published: eLife Sciences Publications Ltd 2016-05-01
Series:eLife
Subjects:
Online Access:https://elifesciences.org/articles/14859
id doaj-596f2169fc2b49abbec0101dc4d59ab5
record_format Article
spelling doaj-596f2169fc2b49abbec0101dc4d59ab52021-05-05T00:23:37ZengeLife Sciences Publications LtdeLife2050-084X2016-05-01510.7554/eLife.14859The wiring diagram of a glomerular olfactory systemMatthew E Berck0Avinash Khandelwal1Lindsey Claus2Luis Hernandez-Nunez3Guangwei Si4Christopher J Tabone5https://orcid.org/0000-0001-8746-0680Feng Li6James W Truman7Rick D Fetter8Matthieu Louis9https://orcid.org/0000-0002-2267-0262Aravinthan DT Samuel10Albert Cardona11https://orcid.org/0000-0003-4941-6536Department of Physics, Harvard University, Cambridge, United States; Center for Brain Science, Harvard University, Cambridge, United StatesEMBL-CRG Systems Biology Program, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, SpainDepartment of Physics, Harvard University, Cambridge, United States; Center for Brain Science, Harvard University, Cambridge, United StatesDepartment of Physics, Harvard University, Cambridge, United States; Center for Brain Science, Harvard University, Cambridge, United StatesDepartment of Physics, Harvard University, Cambridge, United States; Center for Brain Science, Harvard University, Cambridge, United StatesDepartment of Physics, Harvard University, Cambridge, United StatesJanelia Research Campus, Howard Hughes Medical Institute, Ashburn, United StatesJanelia Research Campus, Howard Hughes Medical Institute, Ashburn, United StatesJanelia Research Campus, Howard Hughes Medical Institute, Ashburn, United StatesEMBL-CRG Systems Biology Program, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, SpainDepartment of Physics, Harvard University, Cambridge, United States; Center for Brain Science, Harvard University, Cambridge, United StatesJanelia Research Campus, Howard Hughes Medical Institute, Ashburn, United StatesThe sense of smell enables animals to react to long-distance cues according to learned and innate valences. Here, we have mapped with electron microscopy the complete wiring diagram of the Drosophila larval antennal lobe, an olfactory neuropil similar to the vertebrate olfactory bulb. We found a canonical circuit with uniglomerular projection neurons (uPNs) relaying gain-controlled ORN activity to the mushroom body and the lateral horn. A second, parallel circuit with multiglomerular projection neurons (mPNs) and hierarchically connected local neurons (LNs) selectively integrates multiple ORN signals already at the first synapse. LN-LN synaptic connections putatively implement a bistable gain control mechanism that either computes odor saliency through panglomerular inhibition, or allows some glomeruli to respond to faint aversive odors in the presence of strong appetitive odors. This complete wiring diagram will support experimental and theoretical studies towards bridging the gap between circuits and behavior.https://elifesciences.org/articles/14859olfactionneural circuitsDrosophilaelectron microscopyconnectomics
collection DOAJ
language English
format Article
sources DOAJ
author Matthew E Berck
Avinash Khandelwal
Lindsey Claus
Luis Hernandez-Nunez
Guangwei Si
Christopher J Tabone
Feng Li
James W Truman
Rick D Fetter
Matthieu Louis
Aravinthan DT Samuel
Albert Cardona
spellingShingle Matthew E Berck
Avinash Khandelwal
Lindsey Claus
Luis Hernandez-Nunez
Guangwei Si
Christopher J Tabone
Feng Li
James W Truman
Rick D Fetter
Matthieu Louis
Aravinthan DT Samuel
Albert Cardona
The wiring diagram of a glomerular olfactory system
eLife
olfaction
neural circuits
Drosophila
electron microscopy
connectomics
author_facet Matthew E Berck
Avinash Khandelwal
Lindsey Claus
Luis Hernandez-Nunez
Guangwei Si
Christopher J Tabone
Feng Li
James W Truman
Rick D Fetter
Matthieu Louis
Aravinthan DT Samuel
Albert Cardona
author_sort Matthew E Berck
title The wiring diagram of a glomerular olfactory system
title_short The wiring diagram of a glomerular olfactory system
title_full The wiring diagram of a glomerular olfactory system
title_fullStr The wiring diagram of a glomerular olfactory system
title_full_unstemmed The wiring diagram of a glomerular olfactory system
title_sort wiring diagram of a glomerular olfactory system
publisher eLife Sciences Publications Ltd
series eLife
issn 2050-084X
publishDate 2016-05-01
description The sense of smell enables animals to react to long-distance cues according to learned and innate valences. Here, we have mapped with electron microscopy the complete wiring diagram of the Drosophila larval antennal lobe, an olfactory neuropil similar to the vertebrate olfactory bulb. We found a canonical circuit with uniglomerular projection neurons (uPNs) relaying gain-controlled ORN activity to the mushroom body and the lateral horn. A second, parallel circuit with multiglomerular projection neurons (mPNs) and hierarchically connected local neurons (LNs) selectively integrates multiple ORN signals already at the first synapse. LN-LN synaptic connections putatively implement a bistable gain control mechanism that either computes odor saliency through panglomerular inhibition, or allows some glomeruli to respond to faint aversive odors in the presence of strong appetitive odors. This complete wiring diagram will support experimental and theoretical studies towards bridging the gap between circuits and behavior.
topic olfaction
neural circuits
Drosophila
electron microscopy
connectomics
url https://elifesciences.org/articles/14859
work_keys_str_mv AT mattheweberck thewiringdiagramofaglomerularolfactorysystem
AT avinashkhandelwal thewiringdiagramofaglomerularolfactorysystem
AT lindseyclaus thewiringdiagramofaglomerularolfactorysystem
AT luishernandeznunez thewiringdiagramofaglomerularolfactorysystem
AT guangweisi thewiringdiagramofaglomerularolfactorysystem
AT christopherjtabone thewiringdiagramofaglomerularolfactorysystem
AT fengli thewiringdiagramofaglomerularolfactorysystem
AT jameswtruman thewiringdiagramofaglomerularolfactorysystem
AT rickdfetter thewiringdiagramofaglomerularolfactorysystem
AT matthieulouis thewiringdiagramofaglomerularolfactorysystem
AT aravinthandtsamuel thewiringdiagramofaglomerularolfactorysystem
AT albertcardona thewiringdiagramofaglomerularolfactorysystem
AT mattheweberck wiringdiagramofaglomerularolfactorysystem
AT avinashkhandelwal wiringdiagramofaglomerularolfactorysystem
AT lindseyclaus wiringdiagramofaglomerularolfactorysystem
AT luishernandeznunez wiringdiagramofaglomerularolfactorysystem
AT guangweisi wiringdiagramofaglomerularolfactorysystem
AT christopherjtabone wiringdiagramofaglomerularolfactorysystem
AT fengli wiringdiagramofaglomerularolfactorysystem
AT jameswtruman wiringdiagramofaglomerularolfactorysystem
AT rickdfetter wiringdiagramofaglomerularolfactorysystem
AT matthieulouis wiringdiagramofaglomerularolfactorysystem
AT aravinthandtsamuel wiringdiagramofaglomerularolfactorysystem
AT albertcardona wiringdiagramofaglomerularolfactorysystem
_version_ 1721476379791327232