Analysis of equatorial plasma bubble zonal drift velocities in the Pacific sector by imaging techniques

Using 1024 nights of data from 2002–2005 taken by the Cornell Narrow Field Imager (CNFI), we examine equatorial plasma bubble (EPB) zonal drift velocity characteristics. CNFI is located at the Maui Space Surveillance Site on the Haleakala Volcano (geographic: 20.71° N, 203.83&am...

Full description

Bibliographic Details
Main Authors: D. Yao, J. J. Makela
Format: Article
Language:English
Published: Copernicus Publications 2007-03-01
Series:Annales Geophysicae
Online Access:https://www.ann-geophys.net/25/701/2007/angeo-25-701-2007.pdf
Description
Summary:Using 1024 nights of data from 2002–2005 taken by the Cornell Narrow Field Imager (CNFI), we examine equatorial plasma bubble (EPB) zonal drift velocity characteristics. CNFI is located at the Maui Space Surveillance Site on the Haleakala Volcano (geographic: 20.71° N, 203.83° E; geomagnetic: 21.03° N, 271.84° E) on the island of Maui, Hawaii. The imager is set up to view in a magnetic field-aligned geometry in order to maximize its resolution. We calculate the zonal drift velocities using two methods: a correlation routine and an EPB west-wall intensity gradient tracking routine. These two methods yield sizeable differences in the evenings, suggesting strong pre-local midnight EPB development. An analysis of the drift velocities is also performed based on the three influencing factors of season, geomagnetic activity, and solar activity. In general, our data match published trends and drift characteristics from past studies. However, we find that the drift magnitudes are much lower than results from other imagers at similar latitude sectors but at different longitude sectors, suggesting that zonal drift velocities have a longitudinal dependence.
ISSN:0992-7689
1432-0576