Determination of Mining-Induced Changes in Hydrogeological Parameters of Overburden Aquifer in a Coalfield, Northwest China: Approaches Using the Water Level Response to Earth Tides
The determination of changes in hydrogeological properties (e.g., permeability and specific storage) of aquifers disturbed by mining activity is significant to groundwater resource and ecological environment protection in coal mine areas. However, such parameters are difficult to continuously measur...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi-Wiley
2021-01-01
|
Series: | Geofluids |
Online Access: | http://dx.doi.org/10.1155/2021/5516997 |
id |
doaj-5936768b933144d0a5490303eaaf19c8 |
---|---|
record_format |
Article |
spelling |
doaj-5936768b933144d0a5490303eaaf19c82021-06-07T02:12:47ZengHindawi-WileyGeofluids1468-81232021-01-01202110.1155/2021/5516997Determination of Mining-Induced Changes in Hydrogeological Parameters of Overburden Aquifer in a Coalfield, Northwest China: Approaches Using the Water Level Response to Earth TidesQingyu Xu0Guangcai Wang1Xiangyang Liang2Shen Qu3Zheming Shi4Xianbin Wang5State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment EvolutionState Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment EvolutionXi’an Research Institute of China Coal Technology & Engineering GroupState Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment EvolutionState Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment EvolutionState Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment EvolutionThe determination of changes in hydrogeological properties (e.g., permeability and specific storage) of aquifers disturbed by mining activity is significant to groundwater resource and ecological environment protection in coal mine areas. However, such parameters are difficult to continuously measure in situ using conventional hydrogeological methods, and their temporal changes associated with coal mining are not well understood. The response of well water level to Earth tides provides a unique probe to determine the in situ hydrogeological parameters and their variations. In this study, the tidal responses of well water level were employed to characterize the changes in hydrogeological parameters of the overburden aquifer induced by longwall mining in a coalfield, northwest China. Based on the long-term hourly recorded water level data, two analytical models were used to determine the temporal changes of permeability and specific storage of the overburden aquifer. The results showed that the hydrogeological parameters changed with the longwall coal face advance. When the longwall coal face approached the wells, the aquifer permeability increased several to dozens of times, and the response distance ranged from 80 m to 300 m. The specific storage decreased before the coal face reached wells and recovered after the coal face passed. The results of this study indicate that the hydrogeological parameter changes induced by coal mining are related to the location of the well relative to the coal face and the stress distribution in the overburden aquifer. This study revealed the changes in permeability and specific storage associated with the mining disturbance which could have great significance for quantitative assessment of the impact of mining on overburden aquifer.http://dx.doi.org/10.1155/2021/5516997 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Qingyu Xu Guangcai Wang Xiangyang Liang Shen Qu Zheming Shi Xianbin Wang |
spellingShingle |
Qingyu Xu Guangcai Wang Xiangyang Liang Shen Qu Zheming Shi Xianbin Wang Determination of Mining-Induced Changes in Hydrogeological Parameters of Overburden Aquifer in a Coalfield, Northwest China: Approaches Using the Water Level Response to Earth Tides Geofluids |
author_facet |
Qingyu Xu Guangcai Wang Xiangyang Liang Shen Qu Zheming Shi Xianbin Wang |
author_sort |
Qingyu Xu |
title |
Determination of Mining-Induced Changes in Hydrogeological Parameters of Overburden Aquifer in a Coalfield, Northwest China: Approaches Using the Water Level Response to Earth Tides |
title_short |
Determination of Mining-Induced Changes in Hydrogeological Parameters of Overburden Aquifer in a Coalfield, Northwest China: Approaches Using the Water Level Response to Earth Tides |
title_full |
Determination of Mining-Induced Changes in Hydrogeological Parameters of Overburden Aquifer in a Coalfield, Northwest China: Approaches Using the Water Level Response to Earth Tides |
title_fullStr |
Determination of Mining-Induced Changes in Hydrogeological Parameters of Overburden Aquifer in a Coalfield, Northwest China: Approaches Using the Water Level Response to Earth Tides |
title_full_unstemmed |
Determination of Mining-Induced Changes in Hydrogeological Parameters of Overburden Aquifer in a Coalfield, Northwest China: Approaches Using the Water Level Response to Earth Tides |
title_sort |
determination of mining-induced changes in hydrogeological parameters of overburden aquifer in a coalfield, northwest china: approaches using the water level response to earth tides |
publisher |
Hindawi-Wiley |
series |
Geofluids |
issn |
1468-8123 |
publishDate |
2021-01-01 |
description |
The determination of changes in hydrogeological properties (e.g., permeability and specific storage) of aquifers disturbed by mining activity is significant to groundwater resource and ecological environment protection in coal mine areas. However, such parameters are difficult to continuously measure in situ using conventional hydrogeological methods, and their temporal changes associated with coal mining are not well understood. The response of well water level to Earth tides provides a unique probe to determine the in situ hydrogeological parameters and their variations. In this study, the tidal responses of well water level were employed to characterize the changes in hydrogeological parameters of the overburden aquifer induced by longwall mining in a coalfield, northwest China. Based on the long-term hourly recorded water level data, two analytical models were used to determine the temporal changes of permeability and specific storage of the overburden aquifer. The results showed that the hydrogeological parameters changed with the longwall coal face advance. When the longwall coal face approached the wells, the aquifer permeability increased several to dozens of times, and the response distance ranged from 80 m to 300 m. The specific storage decreased before the coal face reached wells and recovered after the coal face passed. The results of this study indicate that the hydrogeological parameter changes induced by coal mining are related to the location of the well relative to the coal face and the stress distribution in the overburden aquifer. This study revealed the changes in permeability and specific storage associated with the mining disturbance which could have great significance for quantitative assessment of the impact of mining on overburden aquifer. |
url |
http://dx.doi.org/10.1155/2021/5516997 |
work_keys_str_mv |
AT qingyuxu determinationofmininginducedchangesinhydrogeologicalparametersofoverburdenaquiferinacoalfieldnorthwestchinaapproachesusingthewaterlevelresponsetoearthtides AT guangcaiwang determinationofmininginducedchangesinhydrogeologicalparametersofoverburdenaquiferinacoalfieldnorthwestchinaapproachesusingthewaterlevelresponsetoearthtides AT xiangyangliang determinationofmininginducedchangesinhydrogeologicalparametersofoverburdenaquiferinacoalfieldnorthwestchinaapproachesusingthewaterlevelresponsetoearthtides AT shenqu determinationofmininginducedchangesinhydrogeologicalparametersofoverburdenaquiferinacoalfieldnorthwestchinaapproachesusingthewaterlevelresponsetoearthtides AT zhemingshi determinationofmininginducedchangesinhydrogeologicalparametersofoverburdenaquiferinacoalfieldnorthwestchinaapproachesusingthewaterlevelresponsetoearthtides AT xianbinwang determinationofmininginducedchangesinhydrogeologicalparametersofoverburdenaquiferinacoalfieldnorthwestchinaapproachesusingthewaterlevelresponsetoearthtides |
_version_ |
1721393222313312256 |