An Authentication and Key Management Mechanism for Resource Constrained Devices in IEEE 802.11-based IoT Access Networks

Many Internet of Things (IoT) services utilize an IoT access network to connect small devices with remote servers. They can share an access network with standard communication technology, such as IEEE 802.11ah. However, an authentication and key management (AKM) mechanism for resource constrained Io...

Full description

Bibliographic Details
Main Authors: Ki-Wook Kim, Youn-Hee Han, Sung-Gi Min
Format: Article
Language:English
Published: MDPI AG 2017-09-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/17/10/2170
Description
Summary:Many Internet of Things (IoT) services utilize an IoT access network to connect small devices with remote servers. They can share an access network with standard communication technology, such as IEEE 802.11ah. However, an authentication and key management (AKM) mechanism for resource constrained IoT devices using IEEE 802.11ah has not been proposed as yet. We therefore propose a new AKM mechanism for an IoT access network, which is based on IEEE 802.11 key management with the IEEE 802.1X authentication mechanism. The proposed AKM mechanism does not require any pre-configured security information between the access network domain and the IoT service domain. It considers the resource constraints of IoT devices, allowing IoT devices to delegate the burden of AKM processes to a powerful agent. The agent has sufficient power to support various authentication methods for the access point, and it performs cryptographic functions for the IoT devices. Performance analysis shows that the proposed mechanism greatly reduces computation costs, network costs, and memory usage of the resource-constrained IoT device as compared to the existing IEEE 802.11 Key Management with the IEEE 802.1X authentication mechanism.
ISSN:1424-8220