Summary: | Data-driven algorithms have been widely used as effective tools to mimic hydrologic systems. Unlike black-box models, decision tree algorithms offer transparent representations of systems and reveal useful information about the underlying process. A popular class of decision tree models is model tree (MT), which is designed for predicting continuous variables. Most MT algorithms employ an exhaustive search mechanism and a pre-defined splitting criterion to generate a piecewise linear model. However, this approach is computationally intensive, and the selection of the splitting criterion can significantly affect the performance of the generated model. These drawbacks can limit the application of MTs to large datasets. To overcome these shortcomings, a new flexible Model Tree Generator (MTG) framework is introduced here. MTG is equipped with several modules to provide a flexible, efficient, and effective tool for generating MTs. The application of the algorithm is demonstrated through simulation of controlled discharge from several reservoirs across the Contiguous United States (CONUS).
|