New insights into microbial adaptation to extreme saline environments

Extreme halophiles are microorganisms adapted to low water activity living at the upper salt concentration that life can tolerate. We review here recent data that specify the main factors, which determine their peculiar salt-dependent biochemistry. The data suggested that evolution proceeds by stag...

Full description

Bibliographic Details
Main Authors: Vauclare P., Madern D., Girard E., Gabel F., Zaccai G., Franzetti B.
Format: Article
Language:English
Published: EDP Sciences 2014-02-01
Series:BIO Web of Conferences
Online Access:http://dx.doi.org/10.1051/bioconf/20140202001
Description
Summary:Extreme halophiles are microorganisms adapted to low water activity living at the upper salt concentration that life can tolerate. We review here recent data that specify the main factors, which determine their peculiar salt-dependent biochemistry. The data suggested that evolution proceeds by stage to modify the molecular dynamics properties of the entire proteome. Extreme halophiles therefore represent tractable models to understand how fast and to what extent microorganisms adapt to environmental changes. Halophiles are also robust organisms, capable to resist multiple stressors. Preliminary studies indicated that they have developed a cellular response specifically aimed to survive when the salt condition fluctuates. Because of these properties halophilic organisms deserve special attention in the search for traces of life on other planets.
ISSN:2117-4458