Summary: | Abstract Steady increase in prices of petroleum-based fuels and growing environmental concerns are boosting attention to alternative fuels. In this context, biodiesel has drawn attention as an alternative fuel, especially as a substitute to traditional diesel. Biodiesel is commonly produced from triacylglycerols and alcohol through transesterification reaction. Knowledge of equilibrium phase distribution of key components in transesterification systems is essential for a better understanding of the reaction pathway and for guiding the design and optimization of reactors and the products separation. This study reports experimental results and thermodynamic modeling of the liquid-liquid equilibrium of systems composed of soybean oil + monoacylglycerols + diacylglycerols + ethyl oleate + oleic acid + ethanol at 303.15 and 318.15 K. Experimental data were well correlated using NRTL, with a maximum deviation of 0.688%. As for UNIFAC, the deviations between predicted and experimental data ranged from 3.13 to 9.21%.
|