LIQUID-LIQUID EQUILIBRIUM OF SYSTEMS COMPOSED OF SOYBEAN OIL + MONOACYLGLYCEROLS + DIACYLGLYCEROLS + ETHYL OLEATE + OLEIC ACID + ETHANOL AT 303.15 AND 318.15 K

Abstract Steady increase in prices of petroleum-based fuels and growing environmental concerns are boosting attention to alternative fuels. In this context, biodiesel has drawn attention as an alternative fuel, especially as a substitute to traditional diesel. Biodiesel is commonly produced from tri...

Full description

Bibliographic Details
Main Authors: Larissa C. B. A. Bessa, Eduardo A. C. Batista, Antonio J. A. Meirelles
Format: Article
Language:English
Published: Brazilian Society of Chemical Engineering
Series:Brazilian Journal of Chemical Engineering
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322018000200373&lng=en&tlng=en
Description
Summary:Abstract Steady increase in prices of petroleum-based fuels and growing environmental concerns are boosting attention to alternative fuels. In this context, biodiesel has drawn attention as an alternative fuel, especially as a substitute to traditional diesel. Biodiesel is commonly produced from triacylglycerols and alcohol through transesterification reaction. Knowledge of equilibrium phase distribution of key components in transesterification systems is essential for a better understanding of the reaction pathway and for guiding the design and optimization of reactors and the products separation. This study reports experimental results and thermodynamic modeling of the liquid-liquid equilibrium of systems composed of soybean oil + monoacylglycerols + diacylglycerols + ethyl oleate + oleic acid + ethanol at 303.15 and 318.15 K. Experimental data were well correlated using NRTL, with a maximum deviation of 0.688%. As for UNIFAC, the deviations between predicted and experimental data ranged from 3.13 to 9.21%.
ISSN:1678-4383