On well‐posedness of nonlinear conjugation boundary value problem for analytic functions

We consider power type nonlinear conjugation problem for analytic functions. Our main question is to make this problem well‐posed, i.e. to find such classes of functions in which this problem possesses a unique solution. These classes are those with prescribed collections of zeros in the domains an...

Full description

Bibliographic Details
Main Author: S. V. Rogosin
Format: Article
Language:English
Published: Vilnius Gediminas Technical University 2000-12-01
Series:Mathematical Modelling and Analysis
Subjects:
-
Online Access:https://journals.vgtu.lt/index.php/MMA/article/view/9954
id doaj-58d58cde7f834d3dbe9a7f49dc798156
record_format Article
spelling doaj-58d58cde7f834d3dbe9a7f49dc7981562021-07-02T16:49:25ZengVilnius Gediminas Technical UniversityMathematical Modelling and Analysis1392-62921648-35102000-12-015110.3846/13926292.2000.9637138On well‐posedness of nonlinear conjugation boundary value problem for analytic functionsS. V. Rogosin0Department of Mathematics and Mechanics , Belarusian State University , Fr. Skaryny ave 4, Minsk, 220050, Belarus We consider power type nonlinear conjugation problem for analytic functions. Our main question is to make this problem well‐posed, i.e. to find such classes of functions in which this problem possesses a unique solution. These classes are those with prescribed collections of zeros in the domains and/or on their boundaries. Analizinių funkcijų netiesinio sujungimo kraštinio uždavinio korektiškumas Santrauka Nagrinejamas analiziniu funkciju netiesinio sujungimo kraštinis uždavinys. Analizuojami laipsninio tipo netiesiškumai. Pagrindinis darbo tikslas yra korektiškai suformuluoti uždavini, t.y. rasti tokiu funkciju klase, kurioje šis uždavinys turi vieninteli sprendini. Parodyta, kad tokia funkciju klase sudaro funkcijos su iš anksto užduota nuliu aibe srityje ir /arba ant jos kontūro. First Published Online: 14 Oct 2010 https://journals.vgtu.lt/index.php/MMA/article/view/9954-
collection DOAJ
language English
format Article
sources DOAJ
author S. V. Rogosin
spellingShingle S. V. Rogosin
On well‐posedness of nonlinear conjugation boundary value problem for analytic functions
Mathematical Modelling and Analysis
-
author_facet S. V. Rogosin
author_sort S. V. Rogosin
title On well‐posedness of nonlinear conjugation boundary value problem for analytic functions
title_short On well‐posedness of nonlinear conjugation boundary value problem for analytic functions
title_full On well‐posedness of nonlinear conjugation boundary value problem for analytic functions
title_fullStr On well‐posedness of nonlinear conjugation boundary value problem for analytic functions
title_full_unstemmed On well‐posedness of nonlinear conjugation boundary value problem for analytic functions
title_sort on well‐posedness of nonlinear conjugation boundary value problem for analytic functions
publisher Vilnius Gediminas Technical University
series Mathematical Modelling and Analysis
issn 1392-6292
1648-3510
publishDate 2000-12-01
description We consider power type nonlinear conjugation problem for analytic functions. Our main question is to make this problem well‐posed, i.e. to find such classes of functions in which this problem possesses a unique solution. These classes are those with prescribed collections of zeros in the domains and/or on their boundaries. Analizinių funkcijų netiesinio sujungimo kraštinio uždavinio korektiškumas Santrauka Nagrinejamas analiziniu funkciju netiesinio sujungimo kraštinis uždavinys. Analizuojami laipsninio tipo netiesiškumai. Pagrindinis darbo tikslas yra korektiškai suformuluoti uždavini, t.y. rasti tokiu funkciju klase, kurioje šis uždavinys turi vieninteli sprendini. Parodyta, kad tokia funkciju klase sudaro funkcijos su iš anksto užduota nuliu aibe srityje ir /arba ant jos kontūro. First Published Online: 14 Oct 2010
topic -
url https://journals.vgtu.lt/index.php/MMA/article/view/9954
work_keys_str_mv AT svrogosin onwellposednessofnonlinearconjugationboundaryvalueproblemforanalyticfunctions
_version_ 1721326113057144832