Microwave-assisted route for synthesis of nanosized metal oxides
Microwave-assisted route for the synthesis of nanomaterials has gained importance in the field of synthetic technology because of its faster, cleaner and cost effectiveness than the other conventional and wet chemical methods for the preparation of metal oxide nanoparticles. In the present work, syn...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Taylor & Francis Group
2007-01-01
|
Series: | Science and Technology of Advanced Materials |
Online Access: | http://www.iop.org/EJ/abstract/1468-6996/8/6/A07 |
Summary: | Microwave-assisted route for the synthesis of nanomaterials has gained importance in the field of synthetic technology because of its faster, cleaner and cost effectiveness than the other conventional and wet chemical methods for the preparation of metal oxide nanoparticles. In the present work, synthesis of metal oxide nanoparticles viz., γ-Fe2O3, NiO, ZnO, CuO and Co-γ-Fe2O3 were carried out by microwave-assisted route through the thermal decomposition of their respective metal oxalate precursors employing polyvinyl alcohol as a fuel. The metal oxide nanoparticles are then characterized for their size and γ to α (in γ-Fe2O3) transition and structure by employing powder X-ray diffraction (XRD) pattern, high-temperature X-ray diffraction (HTXRD) pattern and Fourier transform infrared (FT-IR) spectral studies. The morphology of the samples ranged from nanorods to irregular-shaped particles for different metal oxide samples on the basis of scanning electron microscopy and transmission electron microscopy images. Frequency-dependent dielectric study of the ferrite samples (γ-Fe2O3 and Co-Fe2O3) showed a similar behaviour, where the dielectric constant decreased rapidly with increase in frequency. Possible explanation for this behaviour is given. |
---|---|
ISSN: | 1468-6996 1878-5514 |