Experimental annotation of the human pathogen Histoplasma capsulatum transcribed regions using high-resolution tiling arrays

<p>Abstract</p> <p>Background</p> <p>The fungal pathogen <it>Histoplasma capsulatum </it>is thought to be the most common cause of fungal respiratory infections in immunocompetent humans, yet little is known about its biology. Here we provide the first genom...

Full description

Bibliographic Details
Main Authors: Sil Anita, Foo Catherine K, Voorhies Mark
Format: Article
Language:English
Published: BMC 2011-09-01
Series:BMC Microbiology
Online Access:http://www.biomedcentral.com/1471-2180/11/216
id doaj-58a5ad53eb8240bc8afe8330d85f50d3
record_format Article
spelling doaj-58a5ad53eb8240bc8afe8330d85f50d32020-11-25T00:48:54ZengBMCBMC Microbiology1471-21802011-09-0111121610.1186/1471-2180-11-216Experimental annotation of the human pathogen Histoplasma capsulatum transcribed regions using high-resolution tiling arraysSil AnitaFoo Catherine KVoorhies Mark<p>Abstract</p> <p>Background</p> <p>The fungal pathogen <it>Histoplasma capsulatum </it>is thought to be the most common cause of fungal respiratory infections in immunocompetent humans, yet little is known about its biology. Here we provide the first genome-wide studies to experimentally validate its genome annotation. A functional interrogation of the <it>Histoplasma </it>genome provides critical support for continued investigation into the biology and pathogenesis of <it>H. capsulatum </it>and related fungi.</p> <p>Results</p> <p>We employed a three-pronged approach to provide a functional annotation for the <it>H. capsulatum </it>G217B strain. First, we probed high-density tiling arrays with labeled cDNAs from cells grown under diverse conditions. These data defined 6,172 transcriptionally active regions (TARs), providing validation of 6,008 gene predictions. Interestingly, 22% of these predictions showed evidence of anti-sense transcription. Additionally, we detected transcription of 264 novel genes not present in the original gene predictions. To further enrich our analysis, we incorporated expression data from whole-genome oligonucleotide microarrays. These expression data included profiling under growth conditions that were not represented in the tiling experiment, and validated an additional 2,249 gene predictions. Finally, we compared the G217B gene predictions to other available fungal genomes, and observed that an additional 254 gene predictions had an ortholog in a different fungal species, suggesting that they represent genuine coding sequences.</p> <p>Conclusions</p> <p>These analyses yielded a high confidence set of validated gene predictions for <it>H. capsulatum</it>. The transcript sets resulting from this study are a valuable resource for further experimental characterization of this ubiquitous fungal pathogen. The data is available for interactive exploration at <url>http://histo.ucsf.edu</url>.</p> http://www.biomedcentral.com/1471-2180/11/216
collection DOAJ
language English
format Article
sources DOAJ
author Sil Anita
Foo Catherine K
Voorhies Mark
spellingShingle Sil Anita
Foo Catherine K
Voorhies Mark
Experimental annotation of the human pathogen Histoplasma capsulatum transcribed regions using high-resolution tiling arrays
BMC Microbiology
author_facet Sil Anita
Foo Catherine K
Voorhies Mark
author_sort Sil Anita
title Experimental annotation of the human pathogen Histoplasma capsulatum transcribed regions using high-resolution tiling arrays
title_short Experimental annotation of the human pathogen Histoplasma capsulatum transcribed regions using high-resolution tiling arrays
title_full Experimental annotation of the human pathogen Histoplasma capsulatum transcribed regions using high-resolution tiling arrays
title_fullStr Experimental annotation of the human pathogen Histoplasma capsulatum transcribed regions using high-resolution tiling arrays
title_full_unstemmed Experimental annotation of the human pathogen Histoplasma capsulatum transcribed regions using high-resolution tiling arrays
title_sort experimental annotation of the human pathogen histoplasma capsulatum transcribed regions using high-resolution tiling arrays
publisher BMC
series BMC Microbiology
issn 1471-2180
publishDate 2011-09-01
description <p>Abstract</p> <p>Background</p> <p>The fungal pathogen <it>Histoplasma capsulatum </it>is thought to be the most common cause of fungal respiratory infections in immunocompetent humans, yet little is known about its biology. Here we provide the first genome-wide studies to experimentally validate its genome annotation. A functional interrogation of the <it>Histoplasma </it>genome provides critical support for continued investigation into the biology and pathogenesis of <it>H. capsulatum </it>and related fungi.</p> <p>Results</p> <p>We employed a three-pronged approach to provide a functional annotation for the <it>H. capsulatum </it>G217B strain. First, we probed high-density tiling arrays with labeled cDNAs from cells grown under diverse conditions. These data defined 6,172 transcriptionally active regions (TARs), providing validation of 6,008 gene predictions. Interestingly, 22% of these predictions showed evidence of anti-sense transcription. Additionally, we detected transcription of 264 novel genes not present in the original gene predictions. To further enrich our analysis, we incorporated expression data from whole-genome oligonucleotide microarrays. These expression data included profiling under growth conditions that were not represented in the tiling experiment, and validated an additional 2,249 gene predictions. Finally, we compared the G217B gene predictions to other available fungal genomes, and observed that an additional 254 gene predictions had an ortholog in a different fungal species, suggesting that they represent genuine coding sequences.</p> <p>Conclusions</p> <p>These analyses yielded a high confidence set of validated gene predictions for <it>H. capsulatum</it>. The transcript sets resulting from this study are a valuable resource for further experimental characterization of this ubiquitous fungal pathogen. The data is available for interactive exploration at <url>http://histo.ucsf.edu</url>.</p>
url http://www.biomedcentral.com/1471-2180/11/216
work_keys_str_mv AT silanita experimentalannotationofthehumanpathogenhistoplasmacapsulatumtranscribedregionsusinghighresolutiontilingarrays
AT foocatherinek experimentalannotationofthehumanpathogenhistoplasmacapsulatumtranscribedregionsusinghighresolutiontilingarrays
AT voorhiesmark experimentalannotationofthehumanpathogenhistoplasmacapsulatumtranscribedregionsusinghighresolutiontilingarrays
_version_ 1725254317122781184