No silver bullet for digital soil mapping: country-specific soil organic carbon estimates across Latin America

<p>Country-specific soil organic carbon (SOC) estimates are the baseline for the Global SOC Map of the Global Soil Partnership (GSOCmap-GSP). This endeavor is key to explaining the uncertainty of global SOC estimates but requires harmonizing heterogeneous datasets and building country-speci...

Full description

Bibliographic Details
Main Authors: M. Guevara, G. F. Olmedo, E. Stell, Y. Yigini, Y. Aguilar Duarte, C. Arellano Hernández, G. E. Arévalo, C. E. Arroyo-Cruz, A. Bolivar, S. Bunning, N. Bustamante Cañas, C. O. Cruz-Gaistardo, F. Davila, M. Dell Acqua, A. Encina, H. Figueredo Tacona, F. Fontes, J. A. Hernández Herrera, A. R. Ibelles Navarro, V. Loayza, A. M. Manueles, F. Mendoza Jara, C. Olivera, R. Osorio Hermosilla, G. Pereira, P. Prieto, I. A. Ramos, J. C. Rey Brina, R. Rivera, J. Rodríguez-Rodríguez, R. Roopnarine, A. Rosales Ibarra, K. A. Rosales Riveiro, G. A. Schulz, A. Spence, G. M. Vasques, R. R. Vargas, R. Vargas
Format: Article
Language:English
Published: Copernicus Publications 2018-08-01
Series:SOIL
Online Access:https://www.soil-journal.net/4/173/2018/soil-4-173-2018.pdf
id doaj-5891a424cc194173a6d3d0789ed398fa
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author M. Guevara
G. F. Olmedo
G. F. Olmedo
E. Stell
Y. Yigini
Y. Aguilar Duarte
C. Arellano Hernández
G. E. Arévalo
C. E. Arroyo-Cruz
A. Bolivar
S. Bunning
N. Bustamante Cañas
C. O. Cruz-Gaistardo
F. Davila
M. Dell Acqua
A. Encina
H. Figueredo Tacona
F. Fontes
J. A. Hernández Herrera
A. R. Ibelles Navarro
V. Loayza
A. M. Manueles
F. Mendoza Jara
C. Olivera
R. Osorio Hermosilla
G. Pereira
P. Prieto
I. A. Ramos
J. C. Rey Brina
R. Rivera
J. Rodríguez-Rodríguez
R. Roopnarine
R. Roopnarine
A. Rosales Ibarra
K. A. Rosales Riveiro
G. A. Schulz
A. Spence
G. M. Vasques
R. R. Vargas
R. Vargas
spellingShingle M. Guevara
G. F. Olmedo
G. F. Olmedo
E. Stell
Y. Yigini
Y. Aguilar Duarte
C. Arellano Hernández
G. E. Arévalo
C. E. Arroyo-Cruz
A. Bolivar
S. Bunning
N. Bustamante Cañas
C. O. Cruz-Gaistardo
F. Davila
M. Dell Acqua
A. Encina
H. Figueredo Tacona
F. Fontes
J. A. Hernández Herrera
A. R. Ibelles Navarro
V. Loayza
A. M. Manueles
F. Mendoza Jara
C. Olivera
R. Osorio Hermosilla
G. Pereira
P. Prieto
I. A. Ramos
J. C. Rey Brina
R. Rivera
J. Rodríguez-Rodríguez
R. Roopnarine
R. Roopnarine
A. Rosales Ibarra
K. A. Rosales Riveiro
G. A. Schulz
A. Spence
G. M. Vasques
R. R. Vargas
R. Vargas
No silver bullet for digital soil mapping: country-specific soil organic carbon estimates across Latin America
SOIL
author_facet M. Guevara
G. F. Olmedo
G. F. Olmedo
E. Stell
Y. Yigini
Y. Aguilar Duarte
C. Arellano Hernández
G. E. Arévalo
C. E. Arroyo-Cruz
A. Bolivar
S. Bunning
N. Bustamante Cañas
C. O. Cruz-Gaistardo
F. Davila
M. Dell Acqua
A. Encina
H. Figueredo Tacona
F. Fontes
J. A. Hernández Herrera
A. R. Ibelles Navarro
V. Loayza
A. M. Manueles
F. Mendoza Jara
C. Olivera
R. Osorio Hermosilla
G. Pereira
P. Prieto
I. A. Ramos
J. C. Rey Brina
R. Rivera
J. Rodríguez-Rodríguez
R. Roopnarine
R. Roopnarine
A. Rosales Ibarra
K. A. Rosales Riveiro
G. A. Schulz
A. Spence
G. M. Vasques
R. R. Vargas
R. Vargas
author_sort M. Guevara
title No silver bullet for digital soil mapping: country-specific soil organic carbon estimates across Latin America
title_short No silver bullet for digital soil mapping: country-specific soil organic carbon estimates across Latin America
title_full No silver bullet for digital soil mapping: country-specific soil organic carbon estimates across Latin America
title_fullStr No silver bullet for digital soil mapping: country-specific soil organic carbon estimates across Latin America
title_full_unstemmed No silver bullet for digital soil mapping: country-specific soil organic carbon estimates across Latin America
title_sort no silver bullet for digital soil mapping: country-specific soil organic carbon estimates across latin america
publisher Copernicus Publications
series SOIL
issn 2199-3971
2199-398X
publishDate 2018-08-01
description <p>Country-specific soil organic carbon (SOC) estimates are the baseline for the Global SOC Map of the Global Soil Partnership (GSOCmap-GSP). This endeavor is key to explaining the uncertainty of global SOC estimates but requires harmonizing heterogeneous datasets and building country-specific capacities for digital soil mapping (DSM). We identified country-specific predictors for SOC and tested the performance of five predictive algorithms for mapping SOC across Latin America. The algorithms included support vector machines (SVMs), random forest (RF), kernel-weighted nearest neighbors (KK), partial least squares regression (PL), and regression kriging based on stepwise multiple linear models (RK). Country-specific training data and SOC predictors (5&thinsp; × &thinsp;5&thinsp;km pixel resolution) were obtained from ISRIC – World Soil Information. Temperature, soil type, vegetation indices, and topographic constraints were the best predictors for SOC, but country-specific predictors and their respective weights varied across Latin America. We compared a large diversity of country-specific datasets and models, and were able to explain SOC variability in a range between  ∼ &thinsp;1 and  ∼ &thinsp;60&thinsp;%, with no universal predictive algorithm among countries. A regional (<i>n</i>&thinsp; = &thinsp;11&thinsp;268 SOC estimates) ensemble of these five algorithms was able to explain  ∼ &thinsp;39&thinsp;% of SOC variability from repeated 5-fold cross-validation. We report a combined SOC stock of 77.8&thinsp;±&thinsp;43.6&thinsp;Pg (uncertainty represented by the full conditional response of independent model residuals) across Latin America. SOC stocks were higher in tropical forests (30&thinsp;±&thinsp;16.5&thinsp;Pg) and croplands (13&thinsp;±&thinsp;8.1&thinsp;Pg). Country-specific and regional ensembles revealed spatial discrepancies across geopolitical borders, higher elevations, and coastal plains, but provided similar regional stocks (77.8&thinsp;±&thinsp;42.2 and 76.8&thinsp;±&thinsp;45.1&thinsp;Pg, respectively). These results are conservative compared to global estimates (e.g., SoilGrids250m 185.8&thinsp;Pg, the Harmonized World Soil Database 138.4&thinsp;Pg, or the GSOCmap-GSP 99.7&thinsp;Pg). Countries with large area (i.e., Brazil, Bolivia, Mexico, Peru) and large spatial SOC heterogeneity had lower SOC stocks per unit area and larger uncertainty in their predictions. We highlight that expert opinion is needed to set boundary prediction limits to avoid unrealistically high modeling estimates. For maximizing explained variance while minimizing prediction bias, the selection of predictive algorithms for SOC mapping should consider density of available data and variability of country-specific environmental gradients. This study highlights the large degree of spatial uncertainty in SOC estimates across Latin America. We provide a framework for improving country-specific mapping efforts and reducing current discrepancy of global, regional, and country-specific SOC estimates.</p>
url https://www.soil-journal.net/4/173/2018/soil-4-173-2018.pdf
work_keys_str_mv AT mguevara nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica
AT gfolmedo nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica
AT gfolmedo nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica
AT estell nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica
AT yyigini nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica
AT yaguilarduarte nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica
AT carellanohernandez nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica
AT gearevalo nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica
AT cearroyocruz nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica
AT abolivar nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica
AT sbunning nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica
AT nbustamantecanas nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica
AT cocruzgaistardo nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica
AT fdavila nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica
AT mdellacqua nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica
AT aencina nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica
AT hfigueredotacona nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica
AT ffontes nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica
AT jahernandezherrera nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica
AT aribellesnavarro nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica
AT vloayza nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica
AT ammanueles nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica
AT fmendozajara nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica
AT colivera nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica
AT rosoriohermosilla nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica
AT gpereira nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica
AT pprieto nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica
AT iaramos nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica
AT jcreybrina nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica
AT rrivera nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica
AT jrodriguezrodriguez nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica
AT rroopnarine nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica
AT rroopnarine nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica
AT arosalesibarra nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica
AT karosalesriveiro nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica
AT gaschulz nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica
AT aspence nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica
AT gmvasques nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica
AT rrvargas nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica
AT rvargas nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica
_version_ 1725852306882166784
spelling doaj-5891a424cc194173a6d3d0789ed398fa2020-11-24T21:58:20ZengCopernicus PublicationsSOIL2199-39712199-398X2018-08-01417319310.5194/soil-4-173-2018No silver bullet for digital soil mapping: country-specific soil organic carbon estimates across Latin AmericaM. Guevara0G. F. Olmedo1G. F. Olmedo2E. Stell3Y. Yigini4Y. Aguilar Duarte5C. Arellano Hernández6G. E. Arévalo7C. E. Arroyo-Cruz8A. Bolivar9S. Bunning10N. Bustamante Cañas11C. O. Cruz-Gaistardo12F. Davila13M. Dell Acqua14A. Encina15H. Figueredo Tacona16F. Fontes17J. A. Hernández Herrera18A. R. Ibelles Navarro19V. Loayza20A. M. Manueles21F. Mendoza Jara22C. Olivera23R. Osorio Hermosilla24G. Pereira25P. Prieto26I. A. Ramos27J. C. Rey Brina28R. Rivera29J. Rodríguez-Rodríguez30R. Roopnarine31R. Roopnarine32A. Rosales Ibarra33K. A. Rosales Riveiro34G. A. Schulz35A. Spence36G. M. Vasques37R. R. Vargas38R. Vargas39University of Delaware, Department of Plant and Soil Sciences, Newark, DE, USAINTA EEA Mendoza, San Martín 3853, Luján de Cuyo, Mendoza, ArgentinaFAO, Vialle de Terme di Caracalla, Rome, ItalyUniversity of Delaware, Department of Plant and Soil Sciences, Newark, DE, USAFAO, Vialle de Terme di Caracalla, Rome, ItalyInstituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Mérida, MexicoInstituto Nacional de Estadísitica y Geografía, Aguascalientes, MexicoZamorano University of Honduras and Asociación Hondureña de la Ciencia del Suelo, Tegucigalpa, HondurasNational Commission for the Knowledge and Use of Biodiversity, Mexico City, MexicoSubdirección Agrología, Instituto Geográfico Agustín Codazzi, Bogotá, ColombiaOficina Regional de la FAO para América Latina y el Caribe, Santiago de Chile, ChileServicio Agrícola y Ganadero, Santiago de Chile, ChileInstituto Nacional de Estadísitica y Geografía, Aguascalientes, MexicoDireccion General de Recursos Naturales, Ministerio de Ganaderia, Agricultura y Pesca, Montevideo, UruguayDireccion General de Recursos Naturales, Ministerio de Ganaderia, Agricultura y Pesca, Montevideo, UruguayFacultad de Ciencias Agrarias de la Universidad Nacional de Asunción, Asunción, ParaguayLand Viceministry, Ministry of Rural Development and Land, La Paz, BoliviaDireccion General de Recursos Naturales, Ministerio de Ganaderia, Agricultura y Pesca, Montevideo, UruguayUniversidad Autónoma Agraria Antonio Narro Unidad Laguna, Torreón, MexicoInstituto Nacional de Estadísitica y Geografía, Aguascalientes, MexicoMinisterio de Agricultura y Ganaderia, Quito, EcuadorZamorano University of Honduras and Asociación Hondureña de la Ciencia del Suelo, Tegucigalpa, HondurasUniversidad Nacional Agraria, Managua, NicaraguaOficina Regional de la FAO para América Latina y el Caribe, Bogotá, ColombiaServicio Agrícola y Ganadero, Santiago de Chile, ChileDireccion General de Recursos Naturales, Ministerio de Ganaderia, Agricultura y Pesca, Montevideo, UruguayDireccion General de Recursos Naturales, Ministerio de Ganaderia, Agricultura y Pesca, Montevideo, UruguayInstituto de Investigación Agropecuaria de Panamá, Panamá, PanamaSociedad Venezolana de la Ciencia del Suelo, Caracas, VenezuelaMinisterio de Medio Ambiente, Santo Domingo, Dominican RepublicNational Commission for the Knowledge and Use of Biodiversity, Mexico City, MexicoDepartment of Natural and Life Sciences, COSTAATT, Port of Spain, Trinidad and TobagoUniversity of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and TobagoInstituto de Innovación en Transferencia y Tecnología Agropecuaria, San José, Costa RicaMinisterio de Ambiente y Recursos Naturales de Guatemala, Ciudad Guatemala, GuatemalaINTA CNIA, Buenos Aires, ArgentinaInternational Centre for Environmental and Nuclear Sciences, University of the West Indies, Kingston, JamaicaEmbrapa Solos, Rio de Janeiro, BrazilFAO, Vialle de Terme di Caracalla, Rome, ItalyUniversity of Delaware, Department of Plant and Soil Sciences, Newark, DE, USA<p>Country-specific soil organic carbon (SOC) estimates are the baseline for the Global SOC Map of the Global Soil Partnership (GSOCmap-GSP). This endeavor is key to explaining the uncertainty of global SOC estimates but requires harmonizing heterogeneous datasets and building country-specific capacities for digital soil mapping (DSM). We identified country-specific predictors for SOC and tested the performance of five predictive algorithms for mapping SOC across Latin America. The algorithms included support vector machines (SVMs), random forest (RF), kernel-weighted nearest neighbors (KK), partial least squares regression (PL), and regression kriging based on stepwise multiple linear models (RK). Country-specific training data and SOC predictors (5&thinsp; × &thinsp;5&thinsp;km pixel resolution) were obtained from ISRIC – World Soil Information. Temperature, soil type, vegetation indices, and topographic constraints were the best predictors for SOC, but country-specific predictors and their respective weights varied across Latin America. We compared a large diversity of country-specific datasets and models, and were able to explain SOC variability in a range between  ∼ &thinsp;1 and  ∼ &thinsp;60&thinsp;%, with no universal predictive algorithm among countries. A regional (<i>n</i>&thinsp; = &thinsp;11&thinsp;268 SOC estimates) ensemble of these five algorithms was able to explain  ∼ &thinsp;39&thinsp;% of SOC variability from repeated 5-fold cross-validation. We report a combined SOC stock of 77.8&thinsp;±&thinsp;43.6&thinsp;Pg (uncertainty represented by the full conditional response of independent model residuals) across Latin America. SOC stocks were higher in tropical forests (30&thinsp;±&thinsp;16.5&thinsp;Pg) and croplands (13&thinsp;±&thinsp;8.1&thinsp;Pg). Country-specific and regional ensembles revealed spatial discrepancies across geopolitical borders, higher elevations, and coastal plains, but provided similar regional stocks (77.8&thinsp;±&thinsp;42.2 and 76.8&thinsp;±&thinsp;45.1&thinsp;Pg, respectively). These results are conservative compared to global estimates (e.g., SoilGrids250m 185.8&thinsp;Pg, the Harmonized World Soil Database 138.4&thinsp;Pg, or the GSOCmap-GSP 99.7&thinsp;Pg). Countries with large area (i.e., Brazil, Bolivia, Mexico, Peru) and large spatial SOC heterogeneity had lower SOC stocks per unit area and larger uncertainty in their predictions. We highlight that expert opinion is needed to set boundary prediction limits to avoid unrealistically high modeling estimates. For maximizing explained variance while minimizing prediction bias, the selection of predictive algorithms for SOC mapping should consider density of available data and variability of country-specific environmental gradients. This study highlights the large degree of spatial uncertainty in SOC estimates across Latin America. We provide a framework for improving country-specific mapping efforts and reducing current discrepancy of global, regional, and country-specific SOC estimates.</p>https://www.soil-journal.net/4/173/2018/soil-4-173-2018.pdf