No silver bullet for digital soil mapping: country-specific soil organic carbon estimates across Latin America
<p>Country-specific soil organic carbon (SOC) estimates are the baseline for the Global SOC Map of the Global Soil Partnership (GSOCmap-GSP). This endeavor is key to explaining the uncertainty of global SOC estimates but requires harmonizing heterogeneous datasets and building country-speci...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2018-08-01
|
Series: | SOIL |
Online Access: | https://www.soil-journal.net/4/173/2018/soil-4-173-2018.pdf |
id |
doaj-5891a424cc194173a6d3d0789ed398fa |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
M. Guevara G. F. Olmedo G. F. Olmedo E. Stell Y. Yigini Y. Aguilar Duarte C. Arellano Hernández G. E. Arévalo C. E. Arroyo-Cruz A. Bolivar S. Bunning N. Bustamante Cañas C. O. Cruz-Gaistardo F. Davila M. Dell Acqua A. Encina H. Figueredo Tacona F. Fontes J. A. Hernández Herrera A. R. Ibelles Navarro V. Loayza A. M. Manueles F. Mendoza Jara C. Olivera R. Osorio Hermosilla G. Pereira P. Prieto I. A. Ramos J. C. Rey Brina R. Rivera J. Rodríguez-Rodríguez R. Roopnarine R. Roopnarine A. Rosales Ibarra K. A. Rosales Riveiro G. A. Schulz A. Spence G. M. Vasques R. R. Vargas R. Vargas |
spellingShingle |
M. Guevara G. F. Olmedo G. F. Olmedo E. Stell Y. Yigini Y. Aguilar Duarte C. Arellano Hernández G. E. Arévalo C. E. Arroyo-Cruz A. Bolivar S. Bunning N. Bustamante Cañas C. O. Cruz-Gaistardo F. Davila M. Dell Acqua A. Encina H. Figueredo Tacona F. Fontes J. A. Hernández Herrera A. R. Ibelles Navarro V. Loayza A. M. Manueles F. Mendoza Jara C. Olivera R. Osorio Hermosilla G. Pereira P. Prieto I. A. Ramos J. C. Rey Brina R. Rivera J. Rodríguez-Rodríguez R. Roopnarine R. Roopnarine A. Rosales Ibarra K. A. Rosales Riveiro G. A. Schulz A. Spence G. M. Vasques R. R. Vargas R. Vargas No silver bullet for digital soil mapping: country-specific soil organic carbon estimates across Latin America SOIL |
author_facet |
M. Guevara G. F. Olmedo G. F. Olmedo E. Stell Y. Yigini Y. Aguilar Duarte C. Arellano Hernández G. E. Arévalo C. E. Arroyo-Cruz A. Bolivar S. Bunning N. Bustamante Cañas C. O. Cruz-Gaistardo F. Davila M. Dell Acqua A. Encina H. Figueredo Tacona F. Fontes J. A. Hernández Herrera A. R. Ibelles Navarro V. Loayza A. M. Manueles F. Mendoza Jara C. Olivera R. Osorio Hermosilla G. Pereira P. Prieto I. A. Ramos J. C. Rey Brina R. Rivera J. Rodríguez-Rodríguez R. Roopnarine R. Roopnarine A. Rosales Ibarra K. A. Rosales Riveiro G. A. Schulz A. Spence G. M. Vasques R. R. Vargas R. Vargas |
author_sort |
M. Guevara |
title |
No silver bullet for digital soil mapping: country-specific soil organic carbon estimates across Latin America |
title_short |
No silver bullet for digital soil mapping: country-specific soil organic carbon estimates across Latin America |
title_full |
No silver bullet for digital soil mapping: country-specific soil organic carbon estimates across Latin America |
title_fullStr |
No silver bullet for digital soil mapping: country-specific soil organic carbon estimates across Latin America |
title_full_unstemmed |
No silver bullet for digital soil mapping: country-specific soil organic carbon estimates across Latin America |
title_sort |
no silver bullet for digital soil mapping: country-specific soil organic carbon estimates across latin america |
publisher |
Copernicus Publications |
series |
SOIL |
issn |
2199-3971 2199-398X |
publishDate |
2018-08-01 |
description |
<p>Country-specific soil organic carbon (SOC) estimates are the baseline for
the Global SOC Map of the Global Soil Partnership (GSOCmap-GSP). This
endeavor is key to explaining the uncertainty of global SOC estimates but
requires harmonizing heterogeneous datasets and building country-specific
capacities for digital soil mapping (DSM). We identified country-specific
predictors for SOC and tested the performance of five predictive algorithms
for mapping SOC across Latin America. The algorithms included support vector
machines (SVMs), random forest (RF), kernel-weighted nearest neighbors (KK),
partial least squares regression (PL), and regression kriging based on
stepwise multiple linear models (RK). Country-specific training data and SOC
predictors (5  ×  5 km pixel resolution) were obtained from
ISRIC – World Soil Information. Temperature, soil type, vegetation
indices, and topographic constraints were the best predictors for SOC, but
country-specific predictors and their respective weights varied across Latin
America. We compared a large diversity of country-specific datasets and
models, and were able to explain SOC variability in a range between ∼  1 and ∼  60 %, with no universal predictive algorithm among
countries. A regional (<i>n</i>  =  11 268 SOC estimates) ensemble of these
five algorithms was able to explain ∼  39 % of SOC variability from
repeated 5-fold cross-validation. We report a combined SOC stock of
77.8 ± 43.6 Pg (uncertainty represented by the full conditional
response of independent model residuals) across Latin America. SOC stocks
were higher in tropical forests (30 ± 16.5 Pg) and croplands
(13 ± 8.1 Pg). Country-specific and regional ensembles revealed
spatial discrepancies across geopolitical borders, higher elevations, and
coastal plains, but provided similar regional stocks (77.8 ± 42.2 and
76.8 ± 45.1 Pg, respectively). These results are conservative
compared to global estimates (e.g., SoilGrids250m 185.8 Pg, the Harmonized
World Soil Database 138.4 Pg, or the GSOCmap-GSP 99.7 Pg). Countries with
large area (i.e., Brazil, Bolivia, Mexico, Peru) and large spatial SOC
heterogeneity had lower SOC stocks per unit area and larger uncertainty in
their predictions. We highlight that expert opinion is needed to set boundary
prediction limits to avoid unrealistically high modeling estimates. For
maximizing explained variance while minimizing prediction bias, the selection
of predictive algorithms for SOC mapping should consider density of available
data and variability of country-specific environmental gradients. This study
highlights the large degree of spatial uncertainty in SOC estimates across
Latin America. We provide a framework for improving country-specific mapping
efforts and reducing current discrepancy of global, regional, and
country-specific SOC estimates.</p> |
url |
https://www.soil-journal.net/4/173/2018/soil-4-173-2018.pdf |
work_keys_str_mv |
AT mguevara nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica AT gfolmedo nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica AT gfolmedo nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica AT estell nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica AT yyigini nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica AT yaguilarduarte nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica AT carellanohernandez nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica AT gearevalo nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica AT cearroyocruz nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica AT abolivar nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica AT sbunning nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica AT nbustamantecanas nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica AT cocruzgaistardo nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica AT fdavila nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica AT mdellacqua nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica AT aencina nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica AT hfigueredotacona nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica AT ffontes nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica AT jahernandezherrera nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica AT aribellesnavarro nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica AT vloayza nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica AT ammanueles nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica AT fmendozajara nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica AT colivera nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica AT rosoriohermosilla nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica AT gpereira nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica AT pprieto nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica AT iaramos nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica AT jcreybrina nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica AT rrivera nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica AT jrodriguezrodriguez nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica AT rroopnarine nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica AT rroopnarine nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica AT arosalesibarra nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica AT karosalesriveiro nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica AT gaschulz nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica AT aspence nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica AT gmvasques nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica AT rrvargas nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica AT rvargas nosilverbulletfordigitalsoilmappingcountryspecificsoilorganiccarbonestimatesacrosslatinamerica |
_version_ |
1725852306882166784 |
spelling |
doaj-5891a424cc194173a6d3d0789ed398fa2020-11-24T21:58:20ZengCopernicus PublicationsSOIL2199-39712199-398X2018-08-01417319310.5194/soil-4-173-2018No silver bullet for digital soil mapping: country-specific soil organic carbon estimates across Latin AmericaM. Guevara0G. F. Olmedo1G. F. Olmedo2E. Stell3Y. Yigini4Y. Aguilar Duarte5C. Arellano Hernández6G. E. Arévalo7C. E. Arroyo-Cruz8A. Bolivar9S. Bunning10N. Bustamante Cañas11C. O. Cruz-Gaistardo12F. Davila13M. Dell Acqua14A. Encina15H. Figueredo Tacona16F. Fontes17J. A. Hernández Herrera18A. R. Ibelles Navarro19V. Loayza20A. M. Manueles21F. Mendoza Jara22C. Olivera23R. Osorio Hermosilla24G. Pereira25P. Prieto26I. A. Ramos27J. C. Rey Brina28R. Rivera29J. Rodríguez-Rodríguez30R. Roopnarine31R. Roopnarine32A. Rosales Ibarra33K. A. Rosales Riveiro34G. A. Schulz35A. Spence36G. M. Vasques37R. R. Vargas38R. Vargas39University of Delaware, Department of Plant and Soil Sciences, Newark, DE, USAINTA EEA Mendoza, San Martín 3853, Luján de Cuyo, Mendoza, ArgentinaFAO, Vialle de Terme di Caracalla, Rome, ItalyUniversity of Delaware, Department of Plant and Soil Sciences, Newark, DE, USAFAO, Vialle de Terme di Caracalla, Rome, ItalyInstituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Mérida, MexicoInstituto Nacional de Estadísitica y Geografía, Aguascalientes, MexicoZamorano University of Honduras and Asociación Hondureña de la Ciencia del Suelo, Tegucigalpa, HondurasNational Commission for the Knowledge and Use of Biodiversity, Mexico City, MexicoSubdirección Agrología, Instituto Geográfico Agustín Codazzi, Bogotá, ColombiaOficina Regional de la FAO para América Latina y el Caribe, Santiago de Chile, ChileServicio Agrícola y Ganadero, Santiago de Chile, ChileInstituto Nacional de Estadísitica y Geografía, Aguascalientes, MexicoDireccion General de Recursos Naturales, Ministerio de Ganaderia, Agricultura y Pesca, Montevideo, UruguayDireccion General de Recursos Naturales, Ministerio de Ganaderia, Agricultura y Pesca, Montevideo, UruguayFacultad de Ciencias Agrarias de la Universidad Nacional de Asunción, Asunción, ParaguayLand Viceministry, Ministry of Rural Development and Land, La Paz, BoliviaDireccion General de Recursos Naturales, Ministerio de Ganaderia, Agricultura y Pesca, Montevideo, UruguayUniversidad Autónoma Agraria Antonio Narro Unidad Laguna, Torreón, MexicoInstituto Nacional de Estadísitica y Geografía, Aguascalientes, MexicoMinisterio de Agricultura y Ganaderia, Quito, EcuadorZamorano University of Honduras and Asociación Hondureña de la Ciencia del Suelo, Tegucigalpa, HondurasUniversidad Nacional Agraria, Managua, NicaraguaOficina Regional de la FAO para América Latina y el Caribe, Bogotá, ColombiaServicio Agrícola y Ganadero, Santiago de Chile, ChileDireccion General de Recursos Naturales, Ministerio de Ganaderia, Agricultura y Pesca, Montevideo, UruguayDireccion General de Recursos Naturales, Ministerio de Ganaderia, Agricultura y Pesca, Montevideo, UruguayInstituto de Investigación Agropecuaria de Panamá, Panamá, PanamaSociedad Venezolana de la Ciencia del Suelo, Caracas, VenezuelaMinisterio de Medio Ambiente, Santo Domingo, Dominican RepublicNational Commission for the Knowledge and Use of Biodiversity, Mexico City, MexicoDepartment of Natural and Life Sciences, COSTAATT, Port of Spain, Trinidad and TobagoUniversity of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and TobagoInstituto de Innovación en Transferencia y Tecnología Agropecuaria, San José, Costa RicaMinisterio de Ambiente y Recursos Naturales de Guatemala, Ciudad Guatemala, GuatemalaINTA CNIA, Buenos Aires, ArgentinaInternational Centre for Environmental and Nuclear Sciences, University of the West Indies, Kingston, JamaicaEmbrapa Solos, Rio de Janeiro, BrazilFAO, Vialle de Terme di Caracalla, Rome, ItalyUniversity of Delaware, Department of Plant and Soil Sciences, Newark, DE, USA<p>Country-specific soil organic carbon (SOC) estimates are the baseline for the Global SOC Map of the Global Soil Partnership (GSOCmap-GSP). This endeavor is key to explaining the uncertainty of global SOC estimates but requires harmonizing heterogeneous datasets and building country-specific capacities for digital soil mapping (DSM). We identified country-specific predictors for SOC and tested the performance of five predictive algorithms for mapping SOC across Latin America. The algorithms included support vector machines (SVMs), random forest (RF), kernel-weighted nearest neighbors (KK), partial least squares regression (PL), and regression kriging based on stepwise multiple linear models (RK). Country-specific training data and SOC predictors (5  ×  5 km pixel resolution) were obtained from ISRIC – World Soil Information. Temperature, soil type, vegetation indices, and topographic constraints were the best predictors for SOC, but country-specific predictors and their respective weights varied across Latin America. We compared a large diversity of country-specific datasets and models, and were able to explain SOC variability in a range between ∼  1 and ∼  60 %, with no universal predictive algorithm among countries. A regional (<i>n</i>  =  11 268 SOC estimates) ensemble of these five algorithms was able to explain ∼  39 % of SOC variability from repeated 5-fold cross-validation. We report a combined SOC stock of 77.8 ± 43.6 Pg (uncertainty represented by the full conditional response of independent model residuals) across Latin America. SOC stocks were higher in tropical forests (30 ± 16.5 Pg) and croplands (13 ± 8.1 Pg). Country-specific and regional ensembles revealed spatial discrepancies across geopolitical borders, higher elevations, and coastal plains, but provided similar regional stocks (77.8 ± 42.2 and 76.8 ± 45.1 Pg, respectively). These results are conservative compared to global estimates (e.g., SoilGrids250m 185.8 Pg, the Harmonized World Soil Database 138.4 Pg, or the GSOCmap-GSP 99.7 Pg). Countries with large area (i.e., Brazil, Bolivia, Mexico, Peru) and large spatial SOC heterogeneity had lower SOC stocks per unit area and larger uncertainty in their predictions. We highlight that expert opinion is needed to set boundary prediction limits to avoid unrealistically high modeling estimates. For maximizing explained variance while minimizing prediction bias, the selection of predictive algorithms for SOC mapping should consider density of available data and variability of country-specific environmental gradients. This study highlights the large degree of spatial uncertainty in SOC estimates across Latin America. We provide a framework for improving country-specific mapping efforts and reducing current discrepancy of global, regional, and country-specific SOC estimates.</p>https://www.soil-journal.net/4/173/2018/soil-4-173-2018.pdf |