Adapting Internet of Things to Arduino-based Devices for Low-Cost Remote Sensing in School Science Learning Environments

<p class="0abstract"><span lang="EN-US">We examine the major technical problems that students experience in authentic scientific inquiry and propose an Arduino-based device, adapting the Internet of Things technology, which is designed for the school science in order...

Full description

Bibliographic Details
Main Authors: Seok-Hyun Ga, Hyun-Jung Cha, Chan-Jong Kim
Format: Article
Language:English
Published: International Association of Online Engineering (IAOE) 2021-02-01
Series:International Journal of Online and Biomedical Engineering
Subjects:
Online Access:https://online-journals.org/index.php/i-joe/article/view/20089
Description
Summary:<p class="0abstract"><span lang="EN-US">We examine the major technical problems that students experience in authentic scientific inquiry and propose an Arduino-based device, adapting the Internet of Things technology, which is designed for the school science in order to solve those technical problems. Three major technical problems as follows: First, it is difficult to have a variety of measuring tools which may satisfy the needs of students. Second, it is hard to equip students with tools befitting the complex inquiry procedures which students develop on their own. Lastly, there exists a problem in which a particular group(s) of students take advantage of their competence in technology and have a monopoly in the process of data analysis. Physical computing and the IoT technology can provide solutions to these problems. Development boards like Arduino and Raspberry Pi can be purchased at affordable prices, which allows for measuring devices to be made at low cost by connecting sensors to those boards. Utilizing these development boards may also lead to the possibility to optimize measuring methods or procedures for inquiries of each student. By transmitting the measured data to the IoT Platform, students can have an equal access to the data and analyze it easily. We also investigate technologies used in IoT-applied physical computing including development boards, IoT platforms, and telecommunications technologies. Lastly, as an example of inquiry that adapts physical computing and IoT, we introduce the case of transferring data, measured by a temperature/humidity sensor connected to a development board, to the IoT Platform and visualizing them.</span></p><div id="dicLayer" style="display: none;"> </div><div id="dicRawData" style="display: none;"> </div><div id="dicLayerLoader"> </div>
ISSN:2626-8493