Effect of Surfactant Concentration Variation on the Thermoelectric Properties of Mesoporous ZnO

The electrical and thermal conductivities and the Seebeck coefficient of mesoporous ZnO thin films were investigated to determine the change of their thermoelectric properties by controlling surfactant concentration in the mesoporous ZnO films, because the thermoelectric properties of mesoporous ZnO...

Full description

Bibliographic Details
Main Authors: Min-Hee Hong, Chang-Sun Park, Sangwoo Shin, Hyung Hee Cho, Won-Seon Seo, Young Soo Lim, Jung-Kun Lee, Hyung-Ho Park
Format: Article
Language:English
Published: Hindawi Limited 2013-01-01
Series:Journal of Nanomaterials
Online Access:http://dx.doi.org/10.1155/2013/172504
Description
Summary:The electrical and thermal conductivities and the Seebeck coefficient of mesoporous ZnO thin films were investigated to determine the change of their thermoelectric properties by controlling surfactant concentration in the mesoporous ZnO films, because the thermoelectric properties of mesoporous ZnO films can be influenced by the porosity of the mesoporous structures, which is primarily determined by surfactant concentration in the films. Mesoporous ZnO thin films were successfully synthesized by using sol-gel and evaporation-induced self-assembly processes. Zinc acetate dihydrate and Brij-76 were used as the starting material and pore structure-forming template, respectively. The porosity of mesoporous ZnO thin films increased from 29% to 40% with increasing surfactant molar ratio. Porosity can be easily altered by controlling the molar ratio of surfactant/precursor. The electrical and thermal conductivity and Seebeck coefficients showed a close correlation with the porosity of the films, indicating that the thermoelectric properties of thin films can be changed by altering their porosity. Mesoporous ZnO thin films with the highest porosity had the best thermoelectric properties (the lowest thermal conductivity and the highest Seebeck coefficient) of the films examined.
ISSN:1687-4110
1687-4129