Role of diffusion-weighted magnetic resonance imaging in assessment of mammographically detected asymmetric densities

Abstract Background Asymmetric breast density is a potentially perplexing finding; it may be due to normal hormonal variation of the parenchymal pattern and summation artifact or it may indicate an underlying true pathology. The current study aimed to identify the role of diffusion-weighted imaging...

Full description

Bibliographic Details
Main Authors: Mohamed Zidan, Shimaa Ali Saad, Eman Abo Elhamd, Hosam Eldin Galal, Reem Elkady
Format: Article
Language:English
Published: SpringerOpen 2020-12-01
Series:The Egyptian Journal of Radiology and Nuclear Medicine
Subjects:
Online Access:https://doi.org/10.1186/s43055-020-00361-5
Description
Summary:Abstract Background Asymmetric breast density is a potentially perplexing finding; it may be due to normal hormonal variation of the parenchymal pattern and summation artifact or it may indicate an underlying true pathology. The current study aimed to identify the role of diffusion-weighted imaging (DWI) and the apparent diffusion coefficient (ADC) values in the assessment of breast asymmetries. Results Fifty breast lesions were detected corresponding to the mammographic asymmetry. There were 35 (70%) benign lesions and 15 (30%) malignant lesions. The mean ADC value was 1.59 ± 0.4 × 10–3 mm2/s for benign lesions and 0.82 ± 0.3 × 10–3 mm2/s for malignant lesions. The ADC cutoff value to differentiate between benign and malignant lesions was 1.10 × 10–3 mm2/s with sensitivity 80%, specificity 88.6%, positive predictive value 75%, negative predictive value 91%, and accuracy 86%. Best results were achieved by implementation of the combined DCE-MRI and DWI protocol, with sensitivity 93.3%, specificity 94.3%, positive predictive value 87.5%, negative predictive value 97.1%, and accuracy 94%. Conclusion Dynamic contrast-enhanced MRI (DCE-MRI) was the most sensitive method for the detection of the underlying malignant pathology of breast asymmetries. However, it provided a limited specificity that may cause improper final BIRADS classification and may increase the unnecessary invasive procedures. DWI was used as an adjunctive method to DCE-MRI that maintained high sensitivity and increased specificity and the overall diagnostic accuracy of breast MRI examination. Best results can be achieved by the combined protocol of DCE-MRI and DWI.
ISSN:2090-4762