Simulation study for ground-based Ku-band microwave observations of ozone and hydroxyl in the polar middle atmosphere

<p>The Ku-band microwave frequencies (10.70–14.25&thinsp;GHz) overlap emissions from ozone (<span class="inline-formula">O<sub>3</sub></span>) at 11.072&thinsp;GHz and hydroxyl radical (OH) at 13.441&thinsp;GHz. These important chemical species in...

Full description

Bibliographic Details
Main Authors: D. A. Newnham, M. A. Clilverd, M. Kosch, A. Seppälä, P. T. Verronen
Format: Article
Language:English
Published: Copernicus Publications 2019-03-01
Series:Atmospheric Measurement Techniques
Online Access:https://www.atmos-meas-tech.net/12/1375/2019/amt-12-1375-2019.pdf
Description
Summary:<p>The Ku-band microwave frequencies (10.70–14.25&thinsp;GHz) overlap emissions from ozone (<span class="inline-formula">O<sub>3</sub></span>) at 11.072&thinsp;GHz and hydroxyl radical (OH) at 13.441&thinsp;GHz. These important chemical species in the polar middle atmosphere respond strongly to high-latitude geomagnetic activity associated with space weather. Atmospheric model calculations predict that energetic electron precipitation (EEP) driven by magnetospheric substorms produces large changes in polar mesospheric <span class="inline-formula">O<sub>3</sub></span> and OH. The EEP typically peaks at geomagnetic latitudes of <span class="inline-formula">∼65</span><span class="inline-formula"><sup>∘</sup></span> and evolves rapidly with time longitudinally and over the geomagnetic latitude range 60–80<span class="inline-formula"><sup>∘</sup></span>. Previous atmospheric modelling studies have shown that during substorms OH abundance can increase by more than an order of magnitude at 64–84&thinsp;km and mesospheric <span class="inline-formula">O<sub>3</sub></span> losses can exceed 50&thinsp;%. In this work, an atmospheric simulation and retrieval study has been performed to determine the requirements for passive microwave radiometers capable of measuring diurnal variations in <span class="inline-formula">O<sub>3</sub></span> and OH profiles from high-latitude Northern Hemisphere and Antarctic locations to verify model predictions. We show that, for a 11.072&thinsp;GHz radiometer making 6&thinsp;h spectral measurements with 10&thinsp;kHz frequency resolution and root-mean-square baseline noise of 1&thinsp;mK, <span class="inline-formula">O<sub>3</sub></span> could be profiled over <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">8</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">4</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="42pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="6795c8d189f4e715bc85b29c13e85307"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-1375-2019-ie00001.svg" width="42pt" height="14pt" src="amt-12-1375-2019-ie00001.png"/></svg:svg></span></span>–0.22&thinsp;hPa (<span class="inline-formula">∼98</span>–58&thinsp;km) with 10–17&thinsp;km height resolution and <span class="inline-formula">∼1</span>&thinsp;ppmv uncertainty. For the equivalent 13.441&thinsp;GHz measurements with vertical sensor polarisation, OH could be profiled over <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">3</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">3</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="42pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="b2936b2136c0b6ded9a213ef1277680c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-1375-2019-ie00002.svg" width="42pt" height="14pt" src="amt-12-1375-2019-ie00002.png"/></svg:svg></span></span>–0.29 hPa (<span class="inline-formula">∼90</span>–56&thinsp;km) with 10–17&thinsp;km height resolution and <span class="inline-formula">∼3</span>&thinsp;ppbv uncertainty. The proposed observations would be highly applicable to studies of EEP, atmospheric dynamics, planetary-scale circulation, chemical transport, and the representation of these processes in polar and global climate models. Such observations would provide a relatively low-cost alternative to increasingly sparse satellite measurements of the polar middle atmosphere, extending long-term data records and also providing “ground truth” calibration data.</p>
ISSN:1867-1381
1867-8548