The Ruminant Farm Systems Animal Module: A Biophysical Description of Animal Management

Dairy production is an important source of nutrients in the global food supply, but environmental impacts are increasingly a concern of consumers, scientists, and policy-makers. Many decisions must be integrated to support sustainable production—which can be achieved using a simulation model. We pro...

Full description

Bibliographic Details
Main Authors: Tayler L. Hansen, Manfei Li, Jinghui Li, Chris J. Vankerhove, Militsa A. Sotirova, Juan M. Tricarico, Victor E. Cabrera, Ermias Kebreab, Kristan F. Reed
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Animals
Subjects:
Online Access:https://www.mdpi.com/2076-2615/11/5/1373
Description
Summary:Dairy production is an important source of nutrients in the global food supply, but environmental impacts are increasingly a concern of consumers, scientists, and policy-makers. Many decisions must be integrated to support sustainable production—which can be achieved using a simulation model. We provide an example of the Ruminant Farm Systems (RuFaS) model to assess changes in the dairy system related to altered animal feed efficiency. RuFaS is a whole-system farm simulation model that simulates the individual animal life cycle, production, and environmental impacts. We added a stochastic animal-level parameter to represent individual animal feed efficiency as a result of reduced residual feed intake and compared High (intake = 94% of expected) and Very High (intake = 88% of expected) efficiency levels with a Baseline scenario (intake = 100% of expected). As expected, the simulated total feed intake was reduced by 6 and 12% for the High and Very High efficiency scenarios, and the expected impact of these improved efficiencies on the greenhouse gas emissions from enteric methane and manure storage was a decrease of 4.6 and 9.3%, respectively.
ISSN:2076-2615