Optimization of Arabian-Shield-Based Natural Pozzolan and Silica Fume for High-Performance Concrete Using Statistical Design of Experiments

In this study, the optimum dosages of silica fume (SF) and natural pozzolan (NP) were experimentally and statistically assessed for the best strength and durability properties of high-performance concrete (HPC). SF and NP were used as partial replacement Portland cement (PC) by up to 12 and 25 wt.%,...

Full description

Bibliographic Details
Main Authors: Yassir M. Abbas, M. Iqbal Khan
Format: Article
Language:English
Published: Hindawi Limited 2021-01-01
Series:Advances in Civil Engineering
Online Access:http://dx.doi.org/10.1155/2021/5512666
Description
Summary:In this study, the optimum dosages of silica fume (SF) and natural pozzolan (NP) were experimentally and statistically assessed for the best strength and durability properties of high-performance concrete (HPC). SF and NP were used as partial replacement Portland cement (PC) by up to 12 and 25 wt.%, respectively. Additionally, the prediction models based on second-level factorial (SLF) and response surface design (RSD) were formulated to estimate the HPC properties and their validation. The SLF-based model was further employed to investigate the significance and interactions of the PC, SF, and NP blends. The 28-day strength of the blended-cement HPC with a water-to-binder ratio w/b of 0.25 was generally higher than that of the control concrete. The positive synergy of PC–NP–SF was also observed in the HPC permeability. The paired t-test of the mean square error (MSE) of the SLF- and RSD-based models revealed that the MSE of the former was notably less than that of the latter. These results established the superiority of the SLF-based model over the RSD-based model. Therefore, the SLF-based model was further employed to investigate the importance of various binders.
ISSN:1687-8094