Summary: | The thermal contact resistance is common in aerospace industry, nuclear reactors and electronic equipments. The work addresses a new scheme for determining the thermal contact resistance between a smooth surface of a film and a rough surface of a metal specimen. The finite element method was used as a tool to explore the surface morphology effect on the thermal contact resistance while the temperature of the contact surface was determined by a regression method. According to the results developed, the temperature on the contact surfaces linearly drops with the increasing average height of surface roughness and nonlinearly drops with the increasing ratio between non-contact area and nominal contact area. On the other hand, the thermal contact resistance increases linearly with increases in the average height of the surface roughness. What's more, the thermal contact resistance increases in a non-linear manner as the ratio of the non-contact area to the nominal contact area is increasing.
|