Using 3DVAR data assimilation system to improve ozone simulations in the Mexico City basin

This study investigates the improvement of ozone (O<sub>3</sub>) simulations in the Mexico City basin using a three-dimensional variational (3DVAR) data assimilation system in meteorological simulations during the MCMA-2003 field measurement campaign. Meteorological simul...

Full description

Bibliographic Details
Main Authors: N. Bei, B. de Foy, W. Lei, M. Zavala, L. T. Molina
Format: Article
Language:English
Published: Copernicus Publications 2008-12-01
Series:Atmospheric Chemistry and Physics
Online Access:http://www.atmos-chem-phys.net/8/7353/2008/acp-8-7353-2008.pdf
Description
Summary:This study investigates the improvement of ozone (O<sub>3</sub>) simulations in the Mexico City basin using a three-dimensional variational (3DVAR) data assimilation system in meteorological simulations during the MCMA-2003 field measurement campaign. Meteorological simulations from the NCAR/Penn State mesoscale model (MM5) are used to drive photochemical simulations with the Comprehensive Air Quality Model with extensions (CAMx) during a four-day episode on 13–16 April 2003. The simulated wind circulation, temperature, and humidity fields in the basin with the data assimilation are found to be more consistent with the observations than those from the reference deterministic forecast. This leads to improved simulations of plume position, peak O<sub>3</sub> timing, and peak O<sub>3</sub> concentrations in the photochemical model. The improvement in O<sub>3</sub> simulations is especially strong during the daytime. The results demonstrate the importance of applying data assimilation in meteorological simulations for air quality studies in the Mexico City basin.
ISSN:1680-7316
1680-7324