Classification of four-class motor imagery employing single-channel electroencephalography.

With advances in brain-computer interface (BCI) research, a portable few- or single-channel BCI system has become necessary. Most recent BCI studies have demonstrated that the common spatial pattern (CSP) algorithm is a powerful tool in extracting features for multiple-class motor imagery. However,...

Full description

Bibliographic Details
Main Authors: Sheng Ge, Ruimin Wang, Dongchuan Yu
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2014-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4064966?pdf=render
Description
Summary:With advances in brain-computer interface (BCI) research, a portable few- or single-channel BCI system has become necessary. Most recent BCI studies have demonstrated that the common spatial pattern (CSP) algorithm is a powerful tool in extracting features for multiple-class motor imagery. However, since the CSP algorithm requires multi-channel information, it is not suitable for a few- or single-channel system. In this study, we applied a short-time Fourier transform to decompose a single-channel electroencephalography signal into the time-frequency domain and construct multi-channel information. Using the reconstructed data, the CSP was combined with a support vector machine to obtain high classification accuracies from channels of both the sensorimotor and forehead areas. These results suggest that motor imagery can be detected with a single channel not only from the traditional sensorimotor area but also from the forehead area.
ISSN:1932-6203