New iterative criteria for strong H $\mathcal{H}$ -tensors and an application
Abstract Strong H $\mathcal{H}$ -tensors play an important role in identifying the positive definiteness of even-order real symmetric tensors. In this paper, some new iterative criteria for identifying strong H $\mathcal{H}$ -tensors are obtained. These criteria only depend on the elements of the te...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2017-02-01
|
Series: | Journal of Inequalities and Applications |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13660-017-1323-1 |
id |
doaj-57f873f5cfa744c1bb628f41241402f7 |
---|---|
record_format |
Article |
spelling |
doaj-57f873f5cfa744c1bb628f41241402f72020-11-24T21:54:40ZengSpringerOpenJournal of Inequalities and Applications1029-242X2017-02-012017111610.1186/s13660-017-1323-1New iterative criteria for strong H $\mathcal{H}$ -tensors and an applicationJingjing Cui0Guohua Peng1Quan Lu2Zhengge Huang3Department of Applied Mathematics, Northwestern Polytechnical UniversityDepartment of Applied Mathematics, Northwestern Polytechnical UniversityDepartment of Applied Mathematics, Northwestern Polytechnical UniversityDepartment of Applied Mathematics, Northwestern Polytechnical UniversityAbstract Strong H $\mathcal{H}$ -tensors play an important role in identifying the positive definiteness of even-order real symmetric tensors. In this paper, some new iterative criteria for identifying strong H $\mathcal{H}$ -tensors are obtained. These criteria only depend on the elements of the tensors, and it can be more effective to determine whether a given tensor is a strong H $\mathcal{H}$ -tensor or not by increasing the number of iterations. Some numerical results show the feasibility and effectiveness of the algorithm.http://link.springer.com/article/10.1186/s13660-017-1323-1strong H $\mathcal{H}$ -tensorspositive definitenessirreduciblenon-zero elements chain |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jingjing Cui Guohua Peng Quan Lu Zhengge Huang |
spellingShingle |
Jingjing Cui Guohua Peng Quan Lu Zhengge Huang New iterative criteria for strong H $\mathcal{H}$ -tensors and an application Journal of Inequalities and Applications strong H $\mathcal{H}$ -tensors positive definiteness irreducible non-zero elements chain |
author_facet |
Jingjing Cui Guohua Peng Quan Lu Zhengge Huang |
author_sort |
Jingjing Cui |
title |
New iterative criteria for strong H $\mathcal{H}$ -tensors and an application |
title_short |
New iterative criteria for strong H $\mathcal{H}$ -tensors and an application |
title_full |
New iterative criteria for strong H $\mathcal{H}$ -tensors and an application |
title_fullStr |
New iterative criteria for strong H $\mathcal{H}$ -tensors and an application |
title_full_unstemmed |
New iterative criteria for strong H $\mathcal{H}$ -tensors and an application |
title_sort |
new iterative criteria for strong h $\mathcal{h}$ -tensors and an application |
publisher |
SpringerOpen |
series |
Journal of Inequalities and Applications |
issn |
1029-242X |
publishDate |
2017-02-01 |
description |
Abstract Strong H $\mathcal{H}$ -tensors play an important role in identifying the positive definiteness of even-order real symmetric tensors. In this paper, some new iterative criteria for identifying strong H $\mathcal{H}$ -tensors are obtained. These criteria only depend on the elements of the tensors, and it can be more effective to determine whether a given tensor is a strong H $\mathcal{H}$ -tensor or not by increasing the number of iterations. Some numerical results show the feasibility and effectiveness of the algorithm. |
topic |
strong H $\mathcal{H}$ -tensors positive definiteness irreducible non-zero elements chain |
url |
http://link.springer.com/article/10.1186/s13660-017-1323-1 |
work_keys_str_mv |
AT jingjingcui newiterativecriteriaforstronghmathcalhtensorsandanapplication AT guohuapeng newiterativecriteriaforstronghmathcalhtensorsandanapplication AT quanlu newiterativecriteriaforstronghmathcalhtensorsandanapplication AT zhenggehuang newiterativecriteriaforstronghmathcalhtensorsandanapplication |
_version_ |
1725866556687122432 |