A Solution of the Junction Riemann Problem for 1D Hyperbolic Balance Laws in Networks including Supersonic Flow Conditions on Elastic Collapsible Tubes
The numerical modeling of one-dimensional (1D) domains joined by symmetric or asymmetric bifurcations or arbitrary junctions is still a challenge in the context of hyperbolic balance laws with application to flow in pipes, open channels or blood vessels, among others. The formulation of the Junction...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-09-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/13/9/1658 |
id |
doaj-57f40db113c24ac5bc875dcbeebee867 |
---|---|
record_format |
Article |
spelling |
doaj-57f40db113c24ac5bc875dcbeebee8672021-09-26T01:31:16ZengMDPI AGSymmetry2073-89942021-09-01131658165810.3390/sym13091658A Solution of the Junction Riemann Problem for 1D Hyperbolic Balance Laws in Networks including Supersonic Flow Conditions on Elastic Collapsible TubesJavier Murillo0Pilar García-Navarro1Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, Mariano Esquillor s/n, 50018 Zaragoza, SpainInstituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, Mariano Esquillor s/n, 50018 Zaragoza, SpainThe numerical modeling of one-dimensional (1D) domains joined by symmetric or asymmetric bifurcations or arbitrary junctions is still a challenge in the context of hyperbolic balance laws with application to flow in pipes, open channels or blood vessels, among others. The formulation of the Junction Riemann Problem (JRP) under subsonic conditions in 1D flow is clearly defined and solved by current methods, but they fail when sonic or supersonic conditions appear. Formulations coupling the 1D model for the vessels or pipes with other container-like formulations for junctions have been presented, requiring extra information such as assumed bulk mechanical properties and geometrical properties or the extension to more dimensions. To the best of our knowledge, in this work, the JRP is solved for the first time allowing solutions for all types of transitions and for any number of vessels, without requiring the definition of any extra information. The resulting JRP solver is theoretically well-founded, robust and simple, and returns the evolving state for the conserved variables in all vessels, allowing the use of any numerical method in the resolution of the inner cells used for the space-discretization of the vessels. The methodology of the proposed solver is presented in detail. The JRP solver is directly applicable if energy losses at the junctions are defined. Straightforward extension to other 1D hyperbolic flows can be performed.https://www.mdpi.com/2073-8994/13/9/1658junctions1D modelhyperbolic balance lawsblood vesselssubsonic-supersonic flow |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Javier Murillo Pilar García-Navarro |
spellingShingle |
Javier Murillo Pilar García-Navarro A Solution of the Junction Riemann Problem for 1D Hyperbolic Balance Laws in Networks including Supersonic Flow Conditions on Elastic Collapsible Tubes Symmetry junctions 1D model hyperbolic balance laws blood vessels subsonic-supersonic flow |
author_facet |
Javier Murillo Pilar García-Navarro |
author_sort |
Javier Murillo |
title |
A Solution of the Junction Riemann Problem for 1D Hyperbolic Balance Laws in Networks including Supersonic Flow Conditions on Elastic Collapsible Tubes |
title_short |
A Solution of the Junction Riemann Problem for 1D Hyperbolic Balance Laws in Networks including Supersonic Flow Conditions on Elastic Collapsible Tubes |
title_full |
A Solution of the Junction Riemann Problem for 1D Hyperbolic Balance Laws in Networks including Supersonic Flow Conditions on Elastic Collapsible Tubes |
title_fullStr |
A Solution of the Junction Riemann Problem for 1D Hyperbolic Balance Laws in Networks including Supersonic Flow Conditions on Elastic Collapsible Tubes |
title_full_unstemmed |
A Solution of the Junction Riemann Problem for 1D Hyperbolic Balance Laws in Networks including Supersonic Flow Conditions on Elastic Collapsible Tubes |
title_sort |
solution of the junction riemann problem for 1d hyperbolic balance laws in networks including supersonic flow conditions on elastic collapsible tubes |
publisher |
MDPI AG |
series |
Symmetry |
issn |
2073-8994 |
publishDate |
2021-09-01 |
description |
The numerical modeling of one-dimensional (1D) domains joined by symmetric or asymmetric bifurcations or arbitrary junctions is still a challenge in the context of hyperbolic balance laws with application to flow in pipes, open channels or blood vessels, among others. The formulation of the Junction Riemann Problem (JRP) under subsonic conditions in 1D flow is clearly defined and solved by current methods, but they fail when sonic or supersonic conditions appear. Formulations coupling the 1D model for the vessels or pipes with other container-like formulations for junctions have been presented, requiring extra information such as assumed bulk mechanical properties and geometrical properties or the extension to more dimensions. To the best of our knowledge, in this work, the JRP is solved for the first time allowing solutions for all types of transitions and for any number of vessels, without requiring the definition of any extra information. The resulting JRP solver is theoretically well-founded, robust and simple, and returns the evolving state for the conserved variables in all vessels, allowing the use of any numerical method in the resolution of the inner cells used for the space-discretization of the vessels. The methodology of the proposed solver is presented in detail. The JRP solver is directly applicable if energy losses at the junctions are defined. Straightforward extension to other 1D hyperbolic flows can be performed. |
topic |
junctions 1D model hyperbolic balance laws blood vessels subsonic-supersonic flow |
url |
https://www.mdpi.com/2073-8994/13/9/1658 |
work_keys_str_mv |
AT javiermurillo asolutionofthejunctionriemannproblemfor1dhyperbolicbalancelawsinnetworksincludingsupersonicflowconditionsonelasticcollapsibletubes AT pilargarcianavarro asolutionofthejunctionriemannproblemfor1dhyperbolicbalancelawsinnetworksincludingsupersonicflowconditionsonelasticcollapsibletubes AT javiermurillo solutionofthejunctionriemannproblemfor1dhyperbolicbalancelawsinnetworksincludingsupersonicflowconditionsonelasticcollapsibletubes AT pilargarcianavarro solutionofthejunctionriemannproblemfor1dhyperbolicbalancelawsinnetworksincludingsupersonicflowconditionsonelasticcollapsibletubes |
_version_ |
1716868768065388544 |