In-Pixel Temperature Sensors with an Accuracy of ±0.25 °C, a 3σ Variation of ±0.7 °C in the Spatial Domain and a 3σ Variation of ±1 °C in the Temporal Domain

This article presents in-pixel (of a CMOS image sensor (CIS)) temperature sensors with improved accuracy in the spatial and the temporal domain. The goal of the temperature sensors is to be used to compensate for dark (current) fixed pattern noise (FPN) during the exposure of the CIS. The temperatur...

Full description

Bibliographic Details
Main Authors: Accel Abarca, Albert Theuwissen
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:Micromachines
Subjects:
Online Access:https://www.mdpi.com/2072-666X/11/7/665
Description
Summary:This article presents in-pixel (of a CMOS image sensor (CIS)) temperature sensors with improved accuracy in the spatial and the temporal domain. The goal of the temperature sensors is to be used to compensate for dark (current) fixed pattern noise (FPN) during the exposure of the CIS. The temperature sensors are based on substrate parasitic bipolar junction transistor (BJT) and on the nMOS source follower of the pixel. The accuracy of these temperature sensors has been improved in the analog domain by using dynamic element matching (DEM), a temperature independent bias current based on a bandgap reference (BGR) with a temperature independent resistor, correlated double sampling (CDS), and a full BGR bias of the gain amplifier. The accuracy of the bipolar based temperature sensor has been improved to a level of ±0.25 °C, a 3σ variation of ±0.7 °C in the spatial domain, and a 3σ variation of ±1 °C in the temporal domain. In the case of the nMOS based temperature sensor, an accuracy of ±0.45 °C, 3σ variation of ±0.95 °C in the spatial domain, and ±1.4 °C in the temporal domain have been acquired. The temperature range is between −40 °C and 100 °C.
ISSN:2072-666X