Study on Macroscopic and Microscopic Mechanical Behavior of Magnetorheological Elastomers by Representative Volume Element Approach

By using a representative volume element (RVE) approach, this paper investigates the effective mechanical properties of anisotropic magnetorheological elastomers (MREs) in which particles are aligned and form chain-like structure under magnetic field during curing. Firstly, a three-dimensional RVE i...

Full description

Bibliographic Details
Main Authors: Shulei Sun, Xiongqi Peng, Zaoyang Guo
Format: Article
Language:English
Published: Hindawi Limited 2014-01-01
Series:Advances in Condensed Matter Physics
Online Access:http://dx.doi.org/10.1155/2014/232510
Description
Summary:By using a representative volume element (RVE) approach, this paper investigates the effective mechanical properties of anisotropic magnetorheological elastomers (MREs) in which particles are aligned and form chain-like structure under magnetic field during curing. Firstly, a three-dimensional RVE in zero magnetic field is presented in ABAQUS/Standard to calculate the macroscopic mechanical properties of MREs. It is shown that the initial shear modulus of MREs increases by 56% with a 20% volume fraction of particles compared to that of pure rubber. Then by introducing the Maxwell stress tensor, a two-dimensional plane stress RVE for the MRE is developed in COMSOL Multiphysics to study its response under a magnetic field. The influences of magnetic field intensity, radius of particles, and distance between two adjacent particles on the macroscopic mechanical properties of MRE are also investigated. The results show that the shear modulus increases with the increase of the applied magnetic field intensity and the radius of particles and the decrease of the distance between two adjacent particles in a chain. The predicted numerical results are consistent with theoretical results from Mori-Tanaka model, double inclusion model, and dipole model.
ISSN:1687-8108
1687-8124