Using DEFORM Software for Determination of Parameters for Two Fracture Criteria on DIN 34CrNiMo6
The aim of this study was to calibrate a material model with two fracture criteria that is available in the DEFORM software on DIN 34CrNiMo6. The purpose is to propose a type of simple test that will be sufficient for the determination of damage parameters. The influence of the quantity of mechanica...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-03-01
|
Series: | Metals |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-4701/10/4/445 |
Summary: | The aim of this study was to calibrate a material model with two fracture criteria that is available in the DEFORM software on DIN 34CrNiMo6. The purpose is to propose a type of simple test that will be sufficient for the determination of damage parameters. The influence of the quantity of mechanical tests on the accuracy of the fracture criterion was explored. This approach was validated using several tests and simulations of damage in a tube and a round bar. These tests are used in engineering applications for their ease of manufacturing and their strong ability to fracture. The prediction of the time and location of the failure was based on the parameters of the relevant damage model. Normalized Cockroft-Latham and Oyane criteria were explored. The validation involved comparing the results of numerical simulation against the test data. The accuracy of prediction of fracture for various stress states using the criteria was evaluated. Both fracture criteria showed good agreement in terms of the fracture locus, but the Oyane criterion proved more suitable for cases covering larger triaxiality ranges. |
---|---|
ISSN: | 2075-4701 |