Triple point of a scalar field theory on a fuzzy sphere

Abstract The model of a scalar field with quartic self-interaction on the fuzzy sphere has three known phases: a uniformly ordered phase, a disordered phase and a non-uniformly ordered phase, the last of which has no classical counterpart. These three phases are expected to meet at a triple point. B...

Full description

Bibliographic Details
Main Authors: Samuel Kováčik, Denjoe O’Connor
Format: Article
Language:English
Published: SpringerOpen 2018-10-01
Series:Journal of High Energy Physics
Subjects:
Online Access:http://link.springer.com/article/10.1007/JHEP10(2018)010
Description
Summary:Abstract The model of a scalar field with quartic self-interaction on the fuzzy sphere has three known phases: a uniformly ordered phase, a disordered phase and a non-uniformly ordered phase, the last of which has no classical counterpart. These three phases are expected to meet at a triple point. By studying the infinite matrix size limit, we locate the position of this triple point to within a small triangle in terms of the parameters of the model. We find the triple point is closer to the coordinate origin of the phase diagram than previous estimates but broadly consistent with recent analytic predictions.
ISSN:1029-8479