Periostin shows increased evolutionary plasticity in its alternatively spliced region
<p>Abstract</p> <p>Background</p> <p>Periostin (POSTN) is a secreted extracellular matrix protein of poorly defined function that has been related to bone and heart development as well as to cancer. In human and mouse, it is known to undergo alternative splicing in its...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2010-01-01
|
Series: | BMC Evolutionary Biology |
Online Access: | http://www.biomedcentral.com/1471-2148/10/30 |
id |
doaj-57d894d8709a45109546472e292a521c |
---|---|
record_format |
Article |
spelling |
doaj-57d894d8709a45109546472e292a521c2021-09-02T01:26:31ZengBMCBMC Evolutionary Biology1471-21482010-01-011013010.1186/1471-2148-10-30Periostin shows increased evolutionary plasticity in its alternatively spliced regionHoersch SebastianAndrade-Navarro Miguel A<p>Abstract</p> <p>Background</p> <p>Periostin (POSTN) is a secreted extracellular matrix protein of poorly defined function that has been related to bone and heart development as well as to cancer. In human and mouse, it is known to undergo alternative splicing in its C-terminal region, which is devoid of known protein domains. Differential expression of periostin, sometimes of specific splicing isoforms, is observed in a broad range of human cancers, including breast, pancreatic, and colon cancer. Here, we combine genomic and transcriptomic sequence data from vertebrate organisms to study the evolution of periostin and particularly of its C-terminal region.</p> <p>Results</p> <p>We found that the C-terminal part of periostin is markedly more variable among vertebrates than the rest of periostin in terms of exon count, length, and splicing pattern, which we interpret as a consequence of neofunctionalization after the split between periostin and its paralog transforming growth factor, beta-induced (TGFBI). We also defined periostin's sequential 13-amino acid repeat units - well conserved in teleost fish, but more obscure in higher vertebrates - whose secondary structure is predicted to be consecutive beta strands. We suggest that these beta strands may mediate binding interactions with other proteins through an extended beta-zipper in a manner similar to the way repeat units in bacterial cell wall proteins have been reported to bind human fibronectin.</p> <p>Conclusions</p> <p>Our results, obtained with the help of the increasingly large collection of complete vertebrate genomes, document the evolutionary plasticity of periostin's C-terminal region, and for the first time suggest a basis for its functional role.</p> http://www.biomedcentral.com/1471-2148/10/30 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Hoersch Sebastian Andrade-Navarro Miguel A |
spellingShingle |
Hoersch Sebastian Andrade-Navarro Miguel A Periostin shows increased evolutionary plasticity in its alternatively spliced region BMC Evolutionary Biology |
author_facet |
Hoersch Sebastian Andrade-Navarro Miguel A |
author_sort |
Hoersch Sebastian |
title |
Periostin shows increased evolutionary plasticity in its alternatively spliced region |
title_short |
Periostin shows increased evolutionary plasticity in its alternatively spliced region |
title_full |
Periostin shows increased evolutionary plasticity in its alternatively spliced region |
title_fullStr |
Periostin shows increased evolutionary plasticity in its alternatively spliced region |
title_full_unstemmed |
Periostin shows increased evolutionary plasticity in its alternatively spliced region |
title_sort |
periostin shows increased evolutionary plasticity in its alternatively spliced region |
publisher |
BMC |
series |
BMC Evolutionary Biology |
issn |
1471-2148 |
publishDate |
2010-01-01 |
description |
<p>Abstract</p> <p>Background</p> <p>Periostin (POSTN) is a secreted extracellular matrix protein of poorly defined function that has been related to bone and heart development as well as to cancer. In human and mouse, it is known to undergo alternative splicing in its C-terminal region, which is devoid of known protein domains. Differential expression of periostin, sometimes of specific splicing isoforms, is observed in a broad range of human cancers, including breast, pancreatic, and colon cancer. Here, we combine genomic and transcriptomic sequence data from vertebrate organisms to study the evolution of periostin and particularly of its C-terminal region.</p> <p>Results</p> <p>We found that the C-terminal part of periostin is markedly more variable among vertebrates than the rest of periostin in terms of exon count, length, and splicing pattern, which we interpret as a consequence of neofunctionalization after the split between periostin and its paralog transforming growth factor, beta-induced (TGFBI). We also defined periostin's sequential 13-amino acid repeat units - well conserved in teleost fish, but more obscure in higher vertebrates - whose secondary structure is predicted to be consecutive beta strands. We suggest that these beta strands may mediate binding interactions with other proteins through an extended beta-zipper in a manner similar to the way repeat units in bacterial cell wall proteins have been reported to bind human fibronectin.</p> <p>Conclusions</p> <p>Our results, obtained with the help of the increasingly large collection of complete vertebrate genomes, document the evolutionary plasticity of periostin's C-terminal region, and for the first time suggest a basis for its functional role.</p> |
url |
http://www.biomedcentral.com/1471-2148/10/30 |
work_keys_str_mv |
AT hoerschsebastian periostinshowsincreasedevolutionaryplasticityinitsalternativelysplicedregion AT andradenavarromiguela periostinshowsincreasedevolutionaryplasticityinitsalternativelysplicedregion |
_version_ |
1721181894868992000 |