Statistical power estimation dataset for external validation GoF tests on EVT distribution
This paper presents the statistical power estimation of goodness-of-fit tests for Extreme Value Theory (EVT) distributions. The presented dataset provides quantitative information on the statistical power, in order to enable the sample size selection in external validation scenario. In particular, h...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2019-08-01
|
Series: | Data in Brief |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2352340919304251 |
id |
doaj-57d33a021b064ae0aa0600b28abbad9f |
---|---|
record_format |
Article |
spelling |
doaj-57d33a021b064ae0aa0600b28abbad9f2020-11-25T01:33:27ZengElsevierData in Brief2352-34092019-08-0125Statistical power estimation dataset for external validation GoF tests on EVT distributionFederico Reghenzani0Giuseppe Massari1Luca Santinelli2William Fornaciari3DEIB, Politecnico di Milano, Milano, Italy; Corresponding author.DEIB, Politecnico di Milano, Milano, ItalyDTIS, Onera, Toulouse, FranceDEIB, Politecnico di Milano, Milano, ItalyThis paper presents the statistical power estimation of goodness-of-fit tests for Extreme Value Theory (EVT) distributions. The presented dataset provides quantitative information on the statistical power, in order to enable the sample size selection in external validation scenario. In particular, high precision estimations of the statistical power of KS, AD, and MAD goodness-of-fit tests have been computed using a Monte Carlo approach. The full raw dataset resulting from this analysis has been published as reference for future studies: https://doi.org/10.17632/hh2byrbbmf.1.http://www.sciencedirect.com/science/article/pii/S2352340919304251 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Federico Reghenzani Giuseppe Massari Luca Santinelli William Fornaciari |
spellingShingle |
Federico Reghenzani Giuseppe Massari Luca Santinelli William Fornaciari Statistical power estimation dataset for external validation GoF tests on EVT distribution Data in Brief |
author_facet |
Federico Reghenzani Giuseppe Massari Luca Santinelli William Fornaciari |
author_sort |
Federico Reghenzani |
title |
Statistical power estimation dataset for external validation GoF tests on EVT distribution |
title_short |
Statistical power estimation dataset for external validation GoF tests on EVT distribution |
title_full |
Statistical power estimation dataset for external validation GoF tests on EVT distribution |
title_fullStr |
Statistical power estimation dataset for external validation GoF tests on EVT distribution |
title_full_unstemmed |
Statistical power estimation dataset for external validation GoF tests on EVT distribution |
title_sort |
statistical power estimation dataset for external validation gof tests on evt distribution |
publisher |
Elsevier |
series |
Data in Brief |
issn |
2352-3409 |
publishDate |
2019-08-01 |
description |
This paper presents the statistical power estimation of goodness-of-fit tests for Extreme Value Theory (EVT) distributions. The presented dataset provides quantitative information on the statistical power, in order to enable the sample size selection in external validation scenario. In particular, high precision estimations of the statistical power of KS, AD, and MAD goodness-of-fit tests have been computed using a Monte Carlo approach. The full raw dataset resulting from this analysis has been published as reference for future studies: https://doi.org/10.17632/hh2byrbbmf.1. |
url |
http://www.sciencedirect.com/science/article/pii/S2352340919304251 |
work_keys_str_mv |
AT federicoreghenzani statisticalpowerestimationdatasetforexternalvalidationgoftestsonevtdistribution AT giuseppemassari statisticalpowerestimationdatasetforexternalvalidationgoftestsonevtdistribution AT lucasantinelli statisticalpowerestimationdatasetforexternalvalidationgoftestsonevtdistribution AT williamfornaciari statisticalpowerestimationdatasetforexternalvalidationgoftestsonevtdistribution |
_version_ |
1725077134755495936 |