Density of NaAlSi<sub>2</sub>O<sub>6</sub> Melt at High Pressure and Temperature Measured by In-Situ X-ray Microtomography

In this study, the volumetric compression of jadeite (NaAlSi<sub>2</sub>O<sub>6</sub>) melt at high pressures was determined by three-dimensional volume imaging using the synchrotron-based X-ray microtomography technique in a rotation-anvil device. Combined with the sample ma...

Full description

Bibliographic Details
Main Authors: Man Xu, Zhicheng Jing, James A. Van Orman, Tony Yu, Yanbin Wang
Format: Article
Language:English
Published: MDPI AG 2020-02-01
Series:Minerals
Subjects:
Online Access:https://www.mdpi.com/2075-163X/10/2/161
id doaj-57b5935dc511459cbd1ab070089d8016
record_format Article
spelling doaj-57b5935dc511459cbd1ab070089d80162020-11-25T00:15:38ZengMDPI AGMinerals2075-163X2020-02-0110216110.3390/min10020161min10020161Density of NaAlSi<sub>2</sub>O<sub>6</sub> Melt at High Pressure and Temperature Measured by In-Situ X-ray MicrotomographyMan Xu0Zhicheng Jing1James A. Van Orman2Tony Yu3Yanbin Wang4Department of Earth, Environmental, and Planetary Sciences, Case Western Reserve University, Cleveland, OH 44106, USADepartment of Earth and Space Sciences, Southern University of Science and Technology, Shenzhen 518055, ChinaDepartment of Earth, Environmental, and Planetary Sciences, Case Western Reserve University, Cleveland, OH 44106, USACenter for Advanced Radiation Sources, The University of Chicago, Chicago, IL 60637, USACenter for Advanced Radiation Sources, The University of Chicago, Chicago, IL 60637, USAIn this study, the volumetric compression of jadeite (NaAlSi<sub>2</sub>O<sub>6</sub>) melt at high pressures was determined by three-dimensional volume imaging using the synchrotron-based X-ray microtomography technique in a rotation-anvil device. Combined with the sample mass, measured using a high-precision analytical balance prior to the high-pressure experiment, the density of jadeite melt was obtained at high pressures and high temperatures up to 4.8 GPa and 1955 K. The density data were fitted to a third-order Birch-Murnaghan equation of state, resulting in a best-fit isothermal bulk modulus <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>K</mi> <mrow> <mi>T</mi> <mn>0</mn> </mrow> </msub> </mrow> </semantics> </math> </inline-formula> of <inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mrow> <mn>10.8</mn> </mrow> <mrow> <mo>&#8722;</mo> <mn>5.3</mn> </mrow> <mrow> <mo>+</mo> <mn>1.9</mn> </mrow> </msubsup> </mrow> </semantics> </math> </inline-formula> GPa and its pressure derivative <inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mi>K</mi> <mrow> <mi>T</mi> <mn>0</mn> </mrow> <mo>&#8242;</mo> </msubsup> </mrow> </semantics> </math> </inline-formula> of <inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mrow> <mn>3.4</mn> </mrow> <mrow> <mo>&#8722;</mo> <mn>0.4</mn> </mrow> <mrow> <mo>+</mo> <mn>6.6</mn> </mrow> </msubsup> </mrow> </semantics> </math> </inline-formula>. Comparison with data for silicate melts of various compositions from the literature shows that alkali-rich, polymerized melts are generally more compressible than alkali-poor, depolymerized ones. The high compressibility of jadeite melt at high pressures implies that polymerized sodium aluminosilicate melts, if generated by low-degree partial melting of mantle peridotite at ~250&#8722;400 km depth in the deep upper mantle, are likely denser than surrounding mantle materials, and thus gravitationally stable.https://www.mdpi.com/2075-163X/10/2/161densityjadeite meltequation of statehigh pressurex-ray microtomography
collection DOAJ
language English
format Article
sources DOAJ
author Man Xu
Zhicheng Jing
James A. Van Orman
Tony Yu
Yanbin Wang
spellingShingle Man Xu
Zhicheng Jing
James A. Van Orman
Tony Yu
Yanbin Wang
Density of NaAlSi<sub>2</sub>O<sub>6</sub> Melt at High Pressure and Temperature Measured by In-Situ X-ray Microtomography
Minerals
density
jadeite melt
equation of state
high pressure
x-ray microtomography
author_facet Man Xu
Zhicheng Jing
James A. Van Orman
Tony Yu
Yanbin Wang
author_sort Man Xu
title Density of NaAlSi<sub>2</sub>O<sub>6</sub> Melt at High Pressure and Temperature Measured by In-Situ X-ray Microtomography
title_short Density of NaAlSi<sub>2</sub>O<sub>6</sub> Melt at High Pressure and Temperature Measured by In-Situ X-ray Microtomography
title_full Density of NaAlSi<sub>2</sub>O<sub>6</sub> Melt at High Pressure and Temperature Measured by In-Situ X-ray Microtomography
title_fullStr Density of NaAlSi<sub>2</sub>O<sub>6</sub> Melt at High Pressure and Temperature Measured by In-Situ X-ray Microtomography
title_full_unstemmed Density of NaAlSi<sub>2</sub>O<sub>6</sub> Melt at High Pressure and Temperature Measured by In-Situ X-ray Microtomography
title_sort density of naalsi<sub>2</sub>o<sub>6</sub> melt at high pressure and temperature measured by in-situ x-ray microtomography
publisher MDPI AG
series Minerals
issn 2075-163X
publishDate 2020-02-01
description In this study, the volumetric compression of jadeite (NaAlSi<sub>2</sub>O<sub>6</sub>) melt at high pressures was determined by three-dimensional volume imaging using the synchrotron-based X-ray microtomography technique in a rotation-anvil device. Combined with the sample mass, measured using a high-precision analytical balance prior to the high-pressure experiment, the density of jadeite melt was obtained at high pressures and high temperatures up to 4.8 GPa and 1955 K. The density data were fitted to a third-order Birch-Murnaghan equation of state, resulting in a best-fit isothermal bulk modulus <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>K</mi> <mrow> <mi>T</mi> <mn>0</mn> </mrow> </msub> </mrow> </semantics> </math> </inline-formula> of <inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mrow> <mn>10.8</mn> </mrow> <mrow> <mo>&#8722;</mo> <mn>5.3</mn> </mrow> <mrow> <mo>+</mo> <mn>1.9</mn> </mrow> </msubsup> </mrow> </semantics> </math> </inline-formula> GPa and its pressure derivative <inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mi>K</mi> <mrow> <mi>T</mi> <mn>0</mn> </mrow> <mo>&#8242;</mo> </msubsup> </mrow> </semantics> </math> </inline-formula> of <inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mrow> <mn>3.4</mn> </mrow> <mrow> <mo>&#8722;</mo> <mn>0.4</mn> </mrow> <mrow> <mo>+</mo> <mn>6.6</mn> </mrow> </msubsup> </mrow> </semantics> </math> </inline-formula>. Comparison with data for silicate melts of various compositions from the literature shows that alkali-rich, polymerized melts are generally more compressible than alkali-poor, depolymerized ones. The high compressibility of jadeite melt at high pressures implies that polymerized sodium aluminosilicate melts, if generated by low-degree partial melting of mantle peridotite at ~250&#8722;400 km depth in the deep upper mantle, are likely denser than surrounding mantle materials, and thus gravitationally stable.
topic density
jadeite melt
equation of state
high pressure
x-ray microtomography
url https://www.mdpi.com/2075-163X/10/2/161
work_keys_str_mv AT manxu densityofnaalsisub2subosub6submeltathighpressureandtemperaturemeasuredbyinsituxraymicrotomography
AT zhichengjing densityofnaalsisub2subosub6submeltathighpressureandtemperaturemeasuredbyinsituxraymicrotomography
AT jamesavanorman densityofnaalsisub2subosub6submeltathighpressureandtemperaturemeasuredbyinsituxraymicrotomography
AT tonyyu densityofnaalsisub2subosub6submeltathighpressureandtemperaturemeasuredbyinsituxraymicrotomography
AT yanbinwang densityofnaalsisub2subosub6submeltathighpressureandtemperaturemeasuredbyinsituxraymicrotomography
_version_ 1725385708839895040